Learn More
The practical construction of scalable quantum-computer hardware capable of executing nontrivial quantum algorithms will require the juxtaposition of different types of quantum systems. We analyze a modular ion trap quantum-computer architecture with a hierarchy of interactions that can scale to very large numbers of qubits. Local entangling quantum gates(More)
Quantum teleportation is the faithful transfer of quantum states between systems, relying on the prior establishment of entanglement and using only classical communication during the transmission. We report teleportation of quantum information between atomic quantum memories separated by about 1 meter. A quantum bit stored in a single trapped ytterbium ion(More)
All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction provides the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a(More)
Quantum networks based on atomic qubits and scattered photons provide a promising way to build a large-scale quantum information processor. We review quantum protocols for generating entanglement and operating gates between two distant atomic qubits, which can be used for constructing scalable atom–photon quantum networks. We emphasize the crucial role of(More)
We observe violation of a Bell inequality between the quantum states of two remote Yb+ ions separated by a distance of about 1 m with the detection loophole closed. The heralded entanglement of two ions is established via interference and joint detection of two emitted photons, whose polarization is entangled with each ion. The entanglement of remote qubits(More)
Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed(More)
Trapped atomic ions are among the most attractive implementations of quantum bits for applications in quantum-information processing, owing to their long trapping lifetimes and long coherence times. Although nearby trapped ions can be entangled through their Coulomb-coupled motion 1–6 , it seems more natural to entangle remotely located ions through a(More)
Randomness is a fundamental feature of nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical(More)
We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can(More)
The fidelity of laser-driven quantum logic operations on trapped ion qubits tend to be lower than microwave-driven logic operations due to the difficulty of stabilizing the driving fields at the ion location. Through stabilization of the driving optical fields and use of composite pulse sequences, we demonstrate high-fidelity single-qubit gates for the(More)