Peter M. Steiner

Learn More
The assumption of strongly ignorable treatment assignment is required for eliminating selection bias in observational studies. To meet this assumption, researchers often rely on a strategy of selecting covariates that they think will control for selection bias. Theory indicates that the most important covariates are those highly correlated with both the(More)
This study uses within-study comparisons to assess the relative importance of covariate choice, unreliability in the measurement of these covariates, and whether regression or various forms of propensity score analysis are used to analyze the outcome data. Two of the within-study comparisons are of the four-arm type, and many more are of the three-arm type.(More)
In this article, we note the many ontological, epistemological, and methodological similarities between how Campbell and Rubin conceptualize causation. We then explore 3 differences in their written emphases about individual case matching in observational studies. We contend that (a) Campbell places greater emphasis than Rubin on the special role of pretest(More)
In this article, we review past studies comparing randomized experiments to regression discontinuity designs, mostly finding similar results, but with significant exceptions. The latter might be due to potential confounds of study characteristics with assignment method or with failure to estimate the same parameter over methods. In this study, we correct(More)
The popularity of matching techniques has increased considerably during the last decades. They are mainly used for matching treatment and control units in order to estimate causal treatment effects from observational studies or for integrating two or more data sets that share a common subset of covariates. In focusing on causal inference with observational(More)
Although randomized studies have high internal validity, generalizability of the estimated causal effect from randomized clinical trials to real-world clinical or educational practice may be limited. We consider the implication of randomized assignment to treatment, as compared with choice of preferred treatment as it occurs in real-world conditions.(More)
This paper examines how pretest measures of a study outcome reduce selection bias in observational studies in education. The theoretical rationale for privileging pretests in bias control is that they are often highly correlated with the outcome, and in many contexts, they are also highly correlated with the selection process. To examine the pretest's role(More)
Single-case designs (SCDs) are short time series that assess intervention effects by measuring units repeatedly over time in both the presence and absence of treatment. This article introduces a statistical technique for analyzing SCD data that has not been much used in psychological and educational research: generalized additive models (GAMs). In(More)