Peter M. Power

Learn More
Pili (type IV fimbriae) of Neisseria meningitidis are glycosylated by the addition of O-linked sugars. Recent work has shown that PglF, a protein with homology to O-antigen 'flippases', is required for the biosynthesis of the pilin-linked glycan and suggests pilin glycosylation occurs in a manner analogous to the wzy-dependent addition of O-antigen to the(More)
Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of either an O-linked trisaccharide, Gal (beta1-4) Gal (alpha1-3) 2,4-diacetamido-2,4,6-trideoxyhexose or an O-linked disaccharide Gal (alpha1,3)(More)
O-Glycosylation is emerging as a common posttranslational modification of surface exposed proteins in bacterial mucosal pathogens. In pathogenic Neisseria an O-glycosylation pathway modifies a single abundant protein, pilin, the subunit protein that forms pili. Here, we identify an additional outer membrane glycoprotein in pathogenic Neisseria, the nitrite(More)
A major part of horizontal gene transfer that contributes to the diversification and adaptation of bacteria is facilitated by genomic islands. The evolution of these islands is poorly understood. Some progress was made with the identification of a set of phylogenetically related genomic islands among the Proteobacteria, recognized from the investigation of(More)
Pili of Neisseria meningitidis are a key virulence factor, being the major adhesin of this capsulate organism and contributing to specificity for the human host. Pili are post-translationally modified by addition of an O-linked trisaccharide, Gal(beta1-4)Gal(alpha1-3)2,4-diacetimido-2,4,6-trideoxyhexose++ +. In a previous study the authors identified and(More)
Haemophilus influenzae is an important human commensal pathogen associated with significant levels of disease. High-throughput DNA sequencing was used to investigate differences in genome content within this species. Genomic DNA sequence was obtained from 85 strains of H. influenzae and from other related species, selected based on geographical site of(More)
An emergent clone of Haemophilus influenzae biogroup aegyptius (Hae) is responsible for outbreaks of Brazilian purpuric fever (BPF). First recorded in Brazil in 1984, the so-called BPF clone of Hae caused a fulminant disease that started with conjunctivitis but developed into septicemic shock; mortality rates were as high as 70%. To identify virulence(More)
In recent years there has been a dramatic increase in reports of glycosylation of proteins in various Gram-negative systems including Neisseria meningitidis, Neisseria gonorrhoeae, Campylobacter jejuni, Pseudomonas aeruginosa, Escherichia coli, Caulobacter crescentus, Aeromonas caviae and Helicobacter pylori. Although this growing list contains many(More)
Simple sequence repeat (SSRs) of DNA are subject to high rates of mutation and are important mediators of adaptation in Haemophilus influenzae. Previous studies of the Rd KW20 genome identified the primacy of tetranucleotide SSRs in mediating phase variation (the rapid reversible switching of gene expression) of surface exposed structures such as(More)
Pilin is the major subunit of the essential virulence factor pili and is glycosylated at Ser63. In this study we investigated the gene pglI to determine whether it is involved in the biosynthesis of the pilin-linked glycan of Neisseria meningitidis strain C311#3. A N. meningitidis C311#3pglI mutant resulted in a change of apparent molecular weight in(More)