Peter M. Mirabito

Learn More
We cloned and characterized three genes from Aspergillus nidulans, designated brlA, abaA and wetA, whose activities are required to complete different stages of conidiophore development. Inactivation of these genes causes major abnormalities in conidiophore morphology and prevents expression of many unrelated, developmentally regulated genes, without(More)
Cytolethal distending toxin (CDT) from the diarrheagenic bacterium Campylobacter jejuni was shown to cause a rapid and specific cell cycle arrest in HeLa and Caco-2 cells. Within 24 h of treatment, CDT caused HeLa cells to arrest with a 4N DNA content, indicative of cells in G2 or early M phase. Immunofluorescence studies indicated that the arrested cells(More)
Aspergillus nidulans brlA, abaA, and wetA form a dependent pathway that regulates asexual reproductive development. The order in which these genes are expressed determines the outcome of development. Expression of brlA in vegetative cells leads to activation of abaA and wetA, cessation of vegetative growth, cellular vacuolization, and spore formation. By(More)
A convenient method to remove selectable markers from fungal transformants permits the markers to be used for sequential transformations, and should also reduce public concerns and regulatory impediments to applications involving environmental release of genetically modified fungi. We report a method for marker removal that requires no genetic selection.(More)
The bimE (blocked-in-mitosis) gene appears to function as a negative mitotic regulator because the recessive bimE7 mutation can override certain interphase-arresting treatments and mutations, causing abnormal induction of mitosis. We have further investigated the role of bimE in cell cycle checkpoint control by: (1) coordinately measuring mitotic induction(More)
The Aspergillus nidulans bimA gene is required for mitosis. Loss of function mutations in bimA cause cells to arrest growth with condensed chromatin and a short, metaphaselike mitotic spindle. bimA is a member of a gene family defined by a repeated motif called the Tetratrico Peptide Repeat (TPR), which is found in genes from bacteria, yeast and insects.(More)
Temperature sensitive (ts) nimA mutants of Aspergillus nidulans arrest at a unique point in G2 which is post activation of CDC2. Here we show that this G2 arrest is due to loss of nimA function and that it is dependent on BIMAAPC3, a component of the anaphase promoting complex/cyclosome (APC/C). Whereas nimA single mutants arrested in G2 with decondensed(More)
Gene-silencing mechanisms are being shown to be associated with an increasing number of fungal developmental processes. Telomere position effect (TPE) is a eukaryotic phenomenon resulting in gene repression in areas immediately adjacent to telomere caps. Here, TPE is shown to regulate expression of transgenes on the left arm of chromosome III and the right(More)
The application of genetic analysis was crucial to the rapid progress that has been made in cell cycle research. Ron Morris, one of the first to apply genetics to cell cycle research, developed Aspergillus nidulans into an important model system for the analysis of many aspects of cell biology. Within the area of cell cycle research, Ron's laboratory is(More)
The Aspergillus nidulans sepI(+) gene has been implicated in the coordination of septation with nuclear division and cell growth. We find that the temperature-sensitive (ts) sepI1 mutation represents a novel allele of bimA(APC3), which encodes a conserved component of the anaphase-promoting complex/cyclosome (APC/C). We have characterized the septation,(More)