Learn More
To examine the role of telomerase in normal and neoplastic growth, the telomerase RNA component (mTR) was deleted from the mouse germline. mTR-/- mice lacked detectable telomerase activity yet were viable for the six generations analyzed. Telomerase-deficient cells could be immortalized in culture, transformed by viral oncogenes, and generated tumors in(More)
The proliferative life-span of the stem cells that sustain hematopoiesis throughout life is not known. It has been proposed that the sequential loss of telomeric DNA from the ends of human chromosomes with each somatic cell division eventually reaches a critical point that triggers cellular senescence. We now show that candidate human stem cells with a(More)
Mammalian telomerase is essential for the maintenance of telomere length [1-5]. Its catalytic core comprises a reverse transcriptase component (TERT) and an RNA component. While the biochemical role of mammalian TERT is well established [6-11], it is unknown whether it is sufficient for telomere-length maintenance, chromosome stability or other cellular(More)
To study the effect of continued telomere shortening on chromosome stability, we have analyzed the telomere length of two individual chromosomes (chromosomes 2 and 11) in fibroblasts derived from wild-type mice and from mice lacking the mouse telomerase RNA (mTER) gene using quantitative fluorescence in situ hybridization. Telomere length at both(More)
It is generally assumed that sister chromatids are genetically and functionally identical and that segregation to daughter cells is a random process. However, functional differences between sister chromatids regulate daughter cell fate in yeast and sister chromatid segregation is not random in Escherichia coli. Differentiated sister chromatids, coupled with(More)
To study telomere length dynamics in hematopoietic cells with age, we analyzed the average length of telomere repeat sequences in diverse populations of nucleated blood cells. More than 500 individuals ranging in age from 0 to 90 yr, including 36 pairs of monozygous and dizygotic twins, were analyzed using quantitative fluorescence in situ hybridization and(More)
Little is known about the genes that regulate telomere length diversity between mammalian species. A candidate gene locus was previously mapped to a region on distal mouse Chr 2q. Within this region, we identified a gene similar to the dog-1 DNA helicase-like gene in C. elegans. We cloned this Regulator of telomere length (Rtel) gene and inactivated its(More)
DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it possible to map SCEs at orders-of-magnitude greater(More)
Vertebrate chromosomes terminate in variable numbers of T2AG3 nucleotide repeats. In order to study telomere repeats at individual chromosomes, we developed novel, quantitative fluorescence in situ hybridization procedures using labeled (C3TA2)3 peptide nucleic acid and digital imaging microscopy. Telomere fluorescence intensity values from metaphase(More)
The potential of cloning depends in part on whether the procedure can reverse cellular aging and restore somatic cells to a phenotypically youthful state. Here, we report the birth of six healthy cloned calves derived from populations of senescent donor somatic cells. Nuclear transfer extended the replicative life-span of senescent cells (zero to four(More)