Learn More
[11C]-(+)-PHNO (4-propyl-9-hydroxynaphthoxazine) is a new agonist radioligand that provides a unique opportunity to measure the high-affinity states of the D2 receptors (D2-high) using positron emission tomography (PET). Here we report on the distribution, displaceablity, specificity and modeling of [11C]-(+)-PHNO and compare it with the well characterized(More)
In vivo opioid receptor binding in the cortical projections of the medial (cingulate and prefrontal cortex) and lateral pain system (primary somatosensory cortex) in male volunteers has been quantitated using [11C]diprenorphine and positron emission tomography. High levels of opioid receptor binding were seen in the cortical projections of the medial pain(More)
CONTEXT Highly significant elevations in regional brain monoamine oxidase A (MAO-A) binding were recently reported during major depressive episodes (MDEs) of major depressive disorder (MDD). The relationship between MAO-A levels and selective serotonin reuptake inhibitor (SSRI) treatment, recovery, and recurrence in MDD is unknown. OBJECTIVES To determine(More)
The prefrontostriatal network is considered to play a key role in executive functions. Previous neuroimaging studies have shown that executive processes tested with card-sorting tasks requiring planning and set-shifting [e.g. Montreal-card-sorting-task (MCST)] may engage the dorsolateral prefrontal cortex (DLPFC) while inducing dopamine release in the(More)
Using conventional autoradiographic and tissue counting techniques, the experimental quantitation of in vivo kinetics of prospective or established radioligands for PET is animal and labour intensive. The present study tested the feasibility of using PET itself to quantitate the specific binding of [11C]raclopride to rat striatum and to study the effects of(More)
The kinetic modeling of [11C]-(+)-PHNO binding to the dopamine D2/3 receptors in six human volunteers using positron emission tomography (PET) is described. [11C]-(+)-PHNO is the first agonist radioligand for the D2/3 in humans and as expected showed high uptake in caudate, putamen, globus pallidus (GP) and ventral striatum, and low uptake in cerebellum. A(More)
The use of a recently commissioned small-diameter, high-resolution positron emission tomography (PET) to obtain a measure of specific binding of 3 carbon-11 labelled ligands in rat striatum is described. Using cerebellum as a reference tissue, compartmental modelling was used to obtain individual estimates of striatal binding potential (defined as the ratio(More)
A method is described to monitor the motion of the head during neurological positron emission tomography (PET) acquisitions and to correct the data post acquisition for the recorded motion prior to image reconstruction. The technique uses an optical tracking system, Polaris, to accurately monitor the position of the head during the PET acquisition. The PET(More)
To date, the study of the relationship between drug occupancy and action in the brain has had to rely on the use of either animal models or of indirect kinetic measures in man, e.g. serum concentrations of unbound drug (as a measure of "free" drug in brain). We describe the first set of experiments which directly measure agonist-induced changes in both(More)
In order to establish whether positron emission tomography (PET) can identify metabolic changes in Alzheimer's disease at a presymptomatic stage, we have examined 24 asymptomatic at risk individuals from families with Alzheimer's disease. A significant reduction in global cerebral metabolic rate for glucose was found when compared with 16 age-matched(More)