Learn More
In this paper, we present a Bayesian framework for both generating inter-subject large deformation transformations between two multi-modal image sets of the brain and for forming multi-class brain atlases. In this framework, the estimated transformations are generated using maximal information about the underlying neuroanatomy present in each of the(More)
The accurate and automated measuring of durations of certain human embryo stages is important to assess embryo viability and predict its clinical outcomes in in vitro fertilization (IVF). In this work, we present a multi-level embryo stage classification method to identify the number of cells at every time point of a time-lapse microscopy video of early(More)
Bradley C. Davis: Medical Image Analysis via Fréchet Means of Diffeomorphisms. The construction of average models of anatomy, as well as regression analysis of anatomical structures, are key issues in medical research, e.g., in the study of brain development and disease progression. When the underlying anatomical process can be modeled by parameters in a(More)
This paper presents a general framework for analyzing structural and radiometric asymmetry in brain images. In a healthy brain, the left and right hemispheres are largely symmetric across the mid-sagittal plane. Brain tumors may belong to one or both of the following categories: mass-effect, in which the diseased tissue displaces healthy tissue; and(More)
The construction of population atlases is a key issue in medical image analysis, and particularly in brain mapping. Large sets of images are mapped into a common coordinate system to study intra-population variability and inter-population differences, to provide voxel-wise mapping of functional sites, and to facilitate tissue and object segmentation via(More)
Many medical image analysis problems that involve multi-modal images lend themselves to solutions that involve class posterior density function images. This paper presents a method for large deformation exemplar class posterior density template estimation. This method generates a representative anatomical template from an arbitrary number of topologically(More)
This paper addresses the challenging problem of statistics on images by describing average and variability. We describe computational anatomy tools for building 3-D and spatio-temporal 4-D atlases of volumetric image data. The method is based on the previously published concept of un-biased atlas building, calculating the nonlinear average image of a(More)
This paper presents a Bayesian framework for generating inverse-consistent inter-subject large deformation transformations between two multi-modal image sets of the brain. In this framework, the estimated transformations are generated using the maximal information about the underlying neuroanatomy present in each of the different modalities. This modality(More)
Fluid attenuated inversion recovery (FLAIR) and diffusion tensor imaging (DTI) techniques have been widely used to evaluate white matter (WM) alterations associated with aging, dementia and cerebral vascular disease. The relationship between FLAIR detected WM lesions (WML) and DTI detected WM integrity changes, however, remains unclear. To investigate this(More)