#### Filter Results:

#### Publication Year

2010

2016

#### Publication Type

#### Co-author

#### Publication Venue

#### Data Set Used

#### Key Phrases

Learn More

We study the problem of enhancing Entity Resolution (ER) with the help of crowdsourcing. ER is the problem of clustering records that refer to the same real-world entity and can be an extremely dicult process for computer algorithms alone. For example, figuring out which images refer to the same person can be a hard task for computers, but an easy one for… (More)

- Vasilis Verroios, Peter Lofgren, Hector Garcia-Molina
- SIGMOD Conference
- 2015

Latency is a critical factor when using a crowdsourcing platform to solve a problem like entity resolution or sorting. In practice, most frameworks attempt to reduce latency by heuristically splitting a budget of questions into rounds, so that after each round the answers are analyzed and new questions are selected. We focus on one of the most extensively… (More)

- Peter Lofgren, Siddhartha Banerjee, Ashish Goel
- WSDM
- 2016

We present new algorithms for Personalized PageRank estimation and Personalized PageRank search. First, for the problem of estimating Personalized PageRank (PPR) from a source distribution to a target node, we present a new bidirectional estimator with simple yet strong guarantees on correctness and performance, and 3x to 8x speedup over existing estimators… (More)

We propose a new algorithm, FAST-PPR, for computing personalized PageRank: given start node <i>s</i> and target node <i>t</i> in a directed graph, and given a threshold δ, it computes the Personalized PageRank π_s(t) from <i>s</i> to <i>t</i>, guaranteeing that the relative error is small as long π<sub><i>s</i></sub>(<i>t</i>) > δ.… (More)

- Peter Lofgren, Ashish Goel
- ArXiv
- 2013

Personalalized PageRank uses random walks to determine the importance or authority of nodes in a graph from the point of view of a given source node. Much past work has considered how to compute personalized PageRank from a given source node to other nodes. In this work we consider the problem of computing personalized PageRanks to a given target node from… (More)

- Peter Lofgren, Siddhartha Banerjee
- NIPS
- 2015

We develop a new bidirectional algorithm for estimating Markov chain multi-step transition probabilities: given a Markov chain, we want to estimate the probability of hitting a given target state in steps after starting from a given source distribution. Given the target state t, we use a (reverse) local power iteration to construct an 'expanded target… (More)

Anonymous blacklisting schemes allow online service providers to prevent future anonymous access by abusive users while preserving the privacy of all anonymous users (both abusive and non-abusive). The first scheme proposed for this purpose was Nymble, an extremely efficient scheme based only on symmetric primitives; however, Nymble relies on trusted third… (More)

- Peter Lofgren, Nicholas Hopper
- Financial Cryptography
- 2011

- Peter Lofgren
- ArXiv
- 2015

We present new, more efficient algorithms for estimating random walk scores such as Personalized PageRank from a given source node to one or several target nodes. These scores are useful for personalized search and recommendations on networks including social networks, user-item networks, and the web. Past work has proposed using Monte Carlo or using linear… (More)

- Peter Lofgren, Siddhartha Banerjee, Ashish Goel
- WAW
- 2015

We present a new algorithm for estimating the Personal-ized PageRank (PPR) between a source and target node on undirected graphs, with sublinear running-time guarantees over the worst-case choice of source and target nodes. Our work builds on a recent line of work on bidirectional estimators for PPR, which obtained sublinear running-time guarantees but in… (More)