Learn More
We present an algorithm for real-time level of detail reduction and display of high-complexity polygonal surface data. The algorithm uses a compact and efficient regular grid representation, and employs a variable screen-space threshold to bound the maximum error of the projected image. A coarse level of simplification is performed to select discrete levels(More)
We present an algorithm for <italic>out-of-core simplification</italic> of large polygonal datasets that are too complex to fit in main memory. The algorithm extends the vertex clustering scheme of Rossignac and Borrel [13] by using error quadric information for the placement of each cluster's representative vertex, which better preserves fine details and(More)
Conventional wisdom says that in order to produce high-quality simplified polygonal models, one must retain and use information about the original model during the simplification process. We demonstrate that excellent simplified models can be produced without the need to compare against information from the original geometry while performing local changes(More)
Large scale scientific simulation codes typically run on a cluster of CPUs that write/read time steps to/from a single file system. As data sets are constantly growing in size, this increasingly leads to I/O bottlenecks. When the rate at which data is produced exceeds the available I/O bandwidth, the simulation stalls and the CPUs are idle. Data compression(More)
We introduce the notion of <italic>image-driven simplification</italic>, a framework that uses images to decide which portions of a model to simplify. This is a departure from approaches that make polygonal simplification decisions based on geometry. As with many methods, we use the edge collapse operator to make incremental changes to a model. Unique to(More)
Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4<sup>d</sup> values in d dimensions to a fixed, user-specified number of bits per(More)
Approved for public release; further dissemination unlimited DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or(More)
Approved for public release; further dissemination unlimited DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or(More)