Peter Kratzer

Learn More
We determine the detailed differences in geometry and band structure between wurtzite (Wz) and zinc blende (Zb) InAs nanowire (NW) surfaces using scanning tunneling microscopy/spectroscopy and photoemission electron microscopy. By establishing unreconstructed and defect-free surface facets for both Wz and Zb, we can reliably measure differences between(More)
We establish a new mechanism for self-propelled motion of droplets, in which ordering of the nanoscale step morphology by sublimation beneath the droplets themselves acts to drive them perpendicular and up the surface steps. The mechanism is demonstrated and explored for Ga droplets on GaP(111)B, using several experimental techniques allowing studies of the(More)
We have studied the stability, the electronic, and the magnetic properties of Co2MnSi(001) thin films for 15 different terminations using density functional theory calculations. The phase diagram obtained by ab initio atomistic thermodynamics shows that in practice the MnSi, pure Mn, or pure Si terminated surfaces can be stabilized under suitable(More)
Density-functional theory calculations are employed to investigate both the epitaxial growth and the magnetic properties of thin Mn and MnSi films on Si(001). For single Mn adatoms, we find a preference for the second-layer interstitial site. While a monolayer Mn film is energetically unfavorable, a capping-Si layer significantly enhances the thermodynamic(More)
Thin-film solar cells with CuIn(x)Ga(1-x)Se2 (CIGS) absorber are still far below their efficiency limit, although lab cells already reach 20.1%. One important aspect is the homogeneity of the alloy. Large-scale simulations combining Monte Carlo and density functional calculations show that two phases coexist in thermal equilibrium below room temperature.(More)
Using density-functional theory within the generalized gradient approximation, we show that Si-based heterostructures with 1/4 layer delta doping of interstitial Mn (Mn(int)) are half-metallic. For Mn(int) concentrations of 1/2 or 1 layer, the states induced in the band gap of delta-doped heterostructures still display high spin polarization, about 85% and(More)
It is shown that substitution of C or N for O recently proposed as a way to create ferromagnetism in otherwise nonmagnetic oxide insulators is curtailed by formation of impurity pairs, and the resultant C2 spin=1 dimers as well as the isoelectronic N2(2+) interact antiferromagnetically in p-type MgO. For C-doped ZnO, however, we demonstrate using the(More)
With the help of density functional calculations using the HSE and PBE functionals, it is shown that incorporation of nitrogen into ZnO nanoparticles is energetically less costly compared to ZnO bulk, due to charge transfer between Zn dangling bonds and the NO impurity. Neutral NO results after full passivation of the doped nanoparticles by a treatment with(More)
A computational study of the epitaxial Co_{2}MnSi(001)/MgO(001) interface relevant to tunneling magnetoresistive devices is presented. Employing ab initio atomistic thermodynamics, we show that the Co or MnSi planes of bulk-terminated Co_{2}MnSi form stable interfaces, while pure Si or pure Mn termination requires nonequilibrium conditions. Except for the(More)