Learn More
Magnetoencephalography (MEG) is a sophisticated tool which yields rich information on the spatial, spectral and temporal signatures of human brain function. Despite unique potential, MEG is limited by a low signal-to-noise ratio (SNR) which is caused by both the inherently small magnetic fields generated by the brain, and the scalp-to-sensor distance. The(More)
A new method for calculating X-ray absorption spectroscopy (XAS) at the L2,3 edges of Ca and transition metals is presented. It is based on the multichannel multiple-scattering theory by Natoli et al. [Phys. Rev. B, (1990), 42, 1944-1968] combined with the eigen-channel R-matrix formalism. Atomic multiplet-like effects, owing to the Coulomb interaction of(More)
Advances in the field of quantum sensing mean that magnetic field sensors, operating at room temperature, are now able to achieve sensitivity similar to that of cryogenically cooled devices (SQUIDs). This means that room temperature magnetoencephalography (MEG), with a greatly increased flexibility of sensor placement can now be considered. Further, these(More)
Methodological advances in multiple scattering theory (MST) in both wave and Green's function versions are reported for the calculation of electronic ground and excited state properties of condensed matter systems with an emphasis on core-level photoemission and absorption spectra. Full-potential MST is reviewed and extended to non-local potentials.(More)