Learn More
Any state of matter is classified according to its order, and the type of order that a physical system can possess is profoundly affected by its dimensionality. Conventional long-range order, as in a ferromagnet or a crystal, is common in three-dimensional systems at low temperature. However, in two-dimensional systems with a continuous symmetry, true(More)
Today's magnetic-field sensors are not capable of making measurements with both high spatial resolution and good field sensitivity. For example, magnetic force microscopy allows the investigation of magnetic structures with a spatial resolution in the nanometre range, but with low sensitivity, whereas SQUIDs and atomic magnetometers enable extremely(More)
The limitations for the coherent manipulation of neutral atoms with fabricated solid state devices, so-called 'atom chips', are addressed. Specifically, we examine the dominant decoherence mechanism, which is due to the magnetic noise originating from the surface of the atom chip. It is shown that the contribution of fluctuations in the chip wires at the(More)
We prepare a chemically and thermally one-dimensional (1D) quantum degenerate Bose gas in a single microtrap. We introduce a new interferometric method to distinguish the quasicondensate fraction of the gas from the thermal cloud at finite temperature. We reach temperatures down to kT≈0.5ℏω(⊥) (transverse oscillator eigenfrequency ω(⊥)) when collisional(More)
Magnetoencephalography (MEG) is a sophisticated tool which yields rich information on the spatial, spectral and temporal signatures of human brain function. Despite unique potential, MEG is limited by a low signal-to-noise ratio (SNR) which is caused by both the inherently small magnetic fields generated by the brain, and the scalp-to-sensor distance. The(More)
We study statically homogeneous Bose-Einstein condensates with spatially inhomogeneous interactions and outline an experimental realization of compensating linear and nonlinear potentials that can yield constant-density solutions. We illustrate how the presence of a step in the nonlinearity coefficient can only be revealed dynamically and examine how to(More)