Peter Kofinas

Learn More
High area nickel and cobalt surfaces were assembled using modified Tobacco mosaic virus (TMV) templates. Rod-shaped TMV templates (300 x 18 nm) engineered to encode unique cysteine residues were self-assembled onto gold patterned surfaces in a vertically oriented fashion, producing a >10-fold increase in surface area. Electroless deposition of ionic metals(More)
Non-covalent molecular imprinting of poly(allylamine hydrochloride) (PAA HCl) with glucose phosphate mono-sodium salt produced molecularly imprinted polymer (MIP) hydrogels capable of quantitative, isomerically specific binding of glucose. By ionic association of a template molecule, glucose phosphate mono-sodium salt, to the polymer prior to covalent(More)
A poly(allylamine hydrochloride) carcinoembryonic antigen-imprinted hydrogel was synthesized using a water-soluble crosslinker, ethylene glycol diglycidyl ether, to investigate its viability for protein recognition. The imprinting factor of the imprinted hydrogel toward carcinoembryonic antigen was found to be approximately 5, while the imprinting factor of(More)
The use of one-dimensional photonic crystals fabricated from a self-assembled lamellar block copolymer as a sensitive and selective fructose sensor is investigated. The polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) films are functionalized with 2-(bromomethyl)phenylboronic acid. The boronic acid moiety confined within the lamellar morphology can(More)
Molecular imprinting is a technique used to synthesize polymers that display selective recognition for a given molecule of interest. In this study, the role of hydrogel electrostatic charge density on the recognition and selectivity properties of protein-imprinted hydrogels was explored, and the effect of variations of the template extraction protocol on(More)
1Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA 2 Institute for Bioscience and Biotechology Research, University of Maryland, College Park, MD 20742, USA 3Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA 4Department of Plant Science and Landscape(More)
Low loss core-shell iron-silica nanocomposites with improved magneto-dielectric properties at radio frequencies (1 MHz-1 GHz) were successfully fabricated. A new simple method was developed to synthesize metallic iron (Fe) nanoparticles with uniform size distribution in an aqueous environment at room temperature. Citric acid and oleic acid served as(More)
This paper examines the interaction between a block copolymer and a virus. A poly(styrene-b-4-vinylpyridine) block copolymer was loaded with nickel, and cast from a selective solvent mixture to form a cylindrical microstructure (PS/P4VP-Ni). The nickel ions were confined within the P4VP block of the copolymer. The binding of tobacco mosaic virus (TMV) and(More)
Molecular imprinting has received significant attention in recent years, as it provides a viable method for creating synthetic receptors capable of selectively recognizing specific target molecules. Despite significant growth within the field, the majority of template molecules studied thus far have been characterized by their low molecular weight and(More)
Molecular imprinted Polymers (MIP) targeted for Tobacco mosaic virus (TMV) have been synthesized. Batch equilibrium studies using imprinted and non-imprinted polymer hydrogels in TMV and TNV solutions were conducted to determine virus-binding capacities. TMV-imprinted hydrogels showed increased binding to TMV (8.8 mg TMV/gpolymer) compared to non-imprinted(More)