Peter Kent Jackson

Learn More
Primary cilium dysfunction underlies the pathogenesis of Bardet-Biedl syndrome (BBS), a genetic disorder whose symptoms include obesity, retinal degeneration, and nephropathy. However, despite the identification of 12 BBS genes, the molecular basis of BBS remains elusive. Here we identify a complex composed of seven highly conserved BBS proteins. This(More)
The c-abl proto-oncogene, which encodes a cytoplasmic protein-tyrosine kinase, is expressed throughout murine gestation and ubiquitously in adult mouse tissues. However, its levels are highest in thymus, spleen, and testes. To examine the in vivo role of c-abl, the gene was disrupted in embryonic stem cells, and the resulting genetically modified cells were(More)
Nephronophthisis (NPHP), Joubert (JBTS), and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using(More)
We have discovered an early mitotic inhibitor, Emi1, which regulates mitosis by inhibiting the anaphase promoting complex/cyclosome (APC). Emi1 is a conserved F box protein containing a zinc binding region essential for APC inhibition. Emi1 accumulates before mitosis and is ubiquitylated and destroyed in mitosis, independent of the APC. Emi1 immunodepletion(More)
Microtubules have pivotal roles in fundamental cellular processes and are targets of antitubulin chemotherapeutics. Microtubule-targeted agents such as Taxol and vincristine are prescribed widely for various malignancies, including ovarian and breast adenocarcinomas, non-small-cell lung cancer, leukaemias and lymphomas. These agents arrest cells in mitosis(More)
Sensory and signaling pathways are exquisitely organized in primary cilia. Bardet-Biedl syndrome (BBS) patients have compromised cilia and signaling. BBS proteins form the BBSome, which binds Rabin8, a guanine nucleotide exchange factor (GEF) activating the Rab8 GTPase, required for ciliary assembly. We now describe serum-regulated upstream vesicular(More)
The anaphase-promoting complex/cyclosome (APC) ubiquitin ligase is activated by Cdc20 and Cdh1 and inhibited by Mad2 and the spindle assembly checkpoint complex, Mad2B, and the early mitotic inhibitor Emi1. Mad2 inhibits APC(Cdc20), whereas Mad2B preferentially inhibits APC(Cdh1). We have examined the mechanism of APC inhibition by Emi1 and find that unlike(More)
The protein p21 (WAF1, CIP1 or sdi1), induced by the tumour-suppressor protein p53, interacts with and inhibits two different targets essential for cell-cycle progression. One of these is the cyclin-Cdk family of kinases and the other is the essential DNA replication factor, proliferating-cell nuclear antigen (PCNA). We report here that separate domains of(More)
Emi1 promotes mitotic entry in Xenopus laevis embryos by inhibiting the APC(Cdc20) ubiquitination complex to allow accumulation of cyclin B. We show here that human Emi1 (hEmi1) functions to promote cyclin A accumulation and S phase entry in somatic cells by inhibiting the APC(Cdh1) complex. At the G1-S transition, hEmi1 is transcriptionally induced by the(More)
Progression through mitosis occurs because cyclin B/Cdc2 activation induces the anaphase promoting complex (APC) to cause cyclin B destruction and mitotic exit. To ensure that cyclin B/Cdc2 does not prematurely activate the APC in early mitosis, there must be a mechanism delaying APC activation. Emi1 is a protein capable of inhibiting the APC in S and G2.(More)