Learn More
Sensory systems are known to adapt their coding strategies to the statistics of their environment, but little is still known about the perceptual implications of such adjustments. We investigated how auditory spatial processing adapts to stimulus statistics by presenting human listeners and anesthetized ferrets with noise sequences in which interaural level(More)
BACKGROUND Neural systems must weight and integrate different sensory cues in order to make decisions. However, environmental conditions often change over time, altering the reliability of different cues and therefore the optimal way for combining them. To explore how cue integration develops in dynamic environments, we examined the effects on auditory(More)
Spatial hearing evolved independently in mammals and birds and is thought to adapt to altered developmental input in different ways. We found, however, that ferrets possess multiple forms of plasticity that are expressed according to which spatial cues are available, suggesting that the basis for adaptation may be similar across species. Our results also(More)
Sound localization mechanisms are particularly plastic during development, when the monaural and binaural acoustic cues that form the basis for spatial hearing change in value as the body grows. Recent studies have shown that the mature brain retains a surprising capacity to relearn to localize sound in the presence of substantially altered auditory spatial(More)
For over a century, the duplex theory has guided our understanding of human sound localization in the horizontal plane. According to this theory, the auditory system uses interaural time differences (ITDs) and interaural level differences (ILDs) to localize low-frequency and high-frequency sounds, respectively. Whilst this theory successfully accounts for(More)
Under normal hearing conditions, comparisons of the sounds reaching each ear are critical for accurate sound localization. Asymmetric hearing loss should therefore degrade spatial hearing and has become an important experimental tool for probing the plasticity of the auditory system, both during development and adulthood. In clinical populations, hearing(More)
A growing number of studies of auditory processing are being carried out in awake, behaving animals, creating a need for precisely controlled sound delivery without restricting head movements. We have designed a system for closed-field stimulus presentation in freely moving ferrets, which comprises lightweight, adjustable headphones that can be consistently(More)
Although the ferret has become an important model species for studying both fundamental and clinical aspects of spatial hearing, previous behavioral work has focused on studies of sound localization and spatial release from masking in the free field. This makes it difficult to tease apart the role played by different spatial cues. In humans and other(More)
  • Launa G Mallett, Kathleen Kowalski-Trakofler, Charles Vaught, William J Wiehagen, Robert H Peters, Peter Keating +3 others
  • 2005
Disclaimer: Mention of any company or product does not constitute endorsement by NIOSH. On-the-job training is a common means of training or retraining workers and the practice may seem simple and straightforward. Doing it effectively however requires more thought and preparation than simply having someone follow an experienced worker around and watch what(More)