Peter K. Stricklett

Learn More
BACKGROUND Cytolytic Shiga toxins (Stx) are believed to be largely responsible for renal damage in post-diarrheal hemolytic-uremic syndrome (D + HUS). Despite the general belief that endothelial cells are the primary target of Stx, there is evidence that proximal tubules may be a site of toxin action. We hypothesized that cultured proximal tubular cells are(More)
Mortality in postdiarrheal hemolytic-uremic syndrome (HUS) is associated with brain injury. Normally, brain cells are resistant to Shiga toxin (Stx), the putative pathogenic toxin in HUS. However, exposure of human brain endothelial cells (HBECs) to tumor necrosis factor (TNF) and/or interleukin (IL)-1 markedly up-regulates Stx receptor(More)
A transgenic mouse approach was used to examine the mechanism of principal cell-specific expression of aquaporin-2 (AQP2) within the renal collecting duct. RT-PCR and immunocytochemistry revealed that murine AQP2 was expressed in principal cells in the renal collecting duct, epithelial cells of the vas deferens, and seminiferous tubules within testis. The(More)
Collecting duct (CD)-specific knockout (KO) of endothelin-1 (ET-1) causes hypertension, impaired ability to excrete a Na load, and enhanced CD sensitivity to the hydrosmotic effects of vasopressin (AVP). CD express the two known ET receptors, ET(A) and ET(B); in the current study, the role of the CD ET(A) receptor in mediating ET-1 actions on this nephron(More)
Renal cysts in autosomal dominant polycystic kidney disease arise from cells throughout the nephron, but there is an uncertainty as to whether both the intercalated cells (ICs) and principal cells (PCs) within the collecting duct give rise to cysts. To determine this, we crossed mice containing loxP sites within introns 1 and 4 of the Pkd1 gene with(More)
BACKGROUND Shiga toxin-1 (Stx-1) has been implicated in the pathogenesis of postdiarrheal hemolytic-uremic syndrome (Stx HUS). Endothelial cells had been felt to be the primary renal target of Stx-1; however, recent studies suggest that renal epithelial cells may also be responsive. To further examine this issue, we evaluated the responsiveness of human(More)
BACKGROUND/AIMS Inflammatory cytokines may enhance renal injury in post-diarrheal hemolytic uremic syndrome (Stx HUS) by enhancing the cytotoxic effect of Shiga toxins (Stx). The sources of inflammatory cytokines in Stx HUS are unclear. Since Stx-1 potently inhibits protein synthesis by glomerular epithelial cells (GEC) and increases cytokine release by(More)
In vitro studies suggest that collecting duct-derived (CD-derived) endothelin-1 (ET-1) can regulate renal Na reabsorption; however, the physiologic role of CD-derived ET-1 is unknown. Consequently, the physiologic effect of selective disruption of the ET-1 gene in the CD of mice was determined. Mice heterozygous for aquaporin2 promoter Cre recombinase and(More)
BACKGROUND/AIMS Cystic epithelia in polycystic kidney disease display features similar to malignant cells. Thiazolidinediones have been shown to have anti-neoplastic properties, therefore we tested the hypothesis that pioglitazone reduces cyst formation, improves renal function, and prolongs survival in a mouse model of polycystic kidney disease. METHODS(More)
In vitro studies suggest that endothelin-1 (ET-1) inhibits vasopressin (AVP)-stimulated water permeability in the collecting duct (CD). To evaluate the role of CD-derived ET-1 in regulating renal water metabolism, the ET-1 gene was selectively disrupted in the CD (CD ET-1 KO). During normal water intake, urinary osmolality (Uosm), plasma Na concentration,(More)