Peter K. Sorger

Learn More
Accurate chromosome segregation relies on the precise regulation of mitotic progression. Regulation involves control over the timing of mitosis and a spindle assembly checkpoint that links anaphase onset to the completion of chromosome-microtubule attachment. In this paper, we combine live-cell imaging of HeLa cells and protein depletion by RNA interference(More)
In microorganisms, noise in gene expression gives rise to cell-to-cell variability in protein concentrations. In mammalian cells, protein levels also vary and individual cells differ widely in their responsiveness to uniform physiological stimuli. In the case of apoptosis mediated by TRAIL (tumour necrosis factor (TNF)-related apoptosis-inducing ligand) it(More)
The complex series of movements that mediates chromosome segregation during mitosis is dependent on the attachment of microtubules to kinetochores, DNA-protein complexes that assemble on centromeric DNA. We describe the use of live-cell imaging and chromatin immunoprecipitation in S. cerevisiae to identify ten kinetochore subunits, among which are yeast(More)
BACKGROUND Systems biology has embraced computational modeling in response to the quantitative nature and increasing scale of contemporary data sets. The onslaught of data is accelerating as molecular profiling technology evolves. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) is a community effort to catalyze discussion about the(More)
In this paper, we describe an algorithmic framework for the automatic detection of diffraction-limited fluorescent spots in 3D optical images at a separation below the Rayleigh limit, i.e. with super-resolution. We demonstrate the potential of super-resolution detection by tracking fluorescently tagged chromosomes during mitosis in budding yeast. Our(More)
When exposed to tumor necrosis factor (TNF) or TNF-related apoptosis-inducing ligand (TRAIL), a closely related death ligand and investigational therapeutic, cells enter a protracted period of variable duration in which only upstream initiator caspases are active. A subsequent and sudden transition marks activation of the downstream effector caspases that(More)
The ErbB signaling pathways, which regulate diverse physiological responses such as cell survival, proliferation and motility, have been subjected to extensive molecular analysis. Nonetheless, it remains poorly understood how different ligands induce different responses and how this is affected by oncogenic mutations. To quantify signal flow through(More)
The mitotic checkpoint protein hsMad2 is required to arrest cells in mitosis when chromosomes are unattached to the mitotic spindle. The presence of a single, lagging chromosome is sufficient to activate the checkpoint, producing a delay at the metaphase-anaphase transition until the last spindle attachment is made. Complete loss of the mitotic checkpoint(More)
We have designed and utilized two in vivo assays of kinetochore integrity in S. cerevisiae. One assay detects relaxation of a transcription block formed at centromeres; the other detects an increase in the mitotic stability of a dicentric test chromosome. ctf13-30 and ctf14-42 were identified as putative kinetochore mutants by both assays. CTF14 is(More)
Mutations in the Adenomatous Polyposis Coli (APC) gene are responsible for familial colon cancer and also occur in the early stages of sporadic colon cancer. APC functions in the Wnt signalling pathway to regulate the degradation of beta-catenin (reviewed in refs 1-3). APC also binds to and stabilizes microtubules in vivo and in vitro, localizes to clusters(More)