Learn More
CpG islands are present in one-half of all human and mouse genes and typically overlap with promoters or exons. We developed a method for high-resolution analysis of the methylation status of CpG islands genome-wide, using arrays of BAC clones and the methylation-sensitive restriction enzyme NotI. Here we demonstrate the accuracy and specificity of the(More)
Intermediate filaments (IFs) are highly diverse intracytoplasmic proteins within the cytoskeleton which exhibit cell type specificity of expression. A growing body of evidence suggests that IFs may be involved as collaborators in complex cellular processes controlling astrocytoma cell morphology, adhesion and proliferation. As the co-expression of different(More)
Tumors arise in part from the deleterious effects of genetic and epigenetic mechanisms on gene expression. In several mouse models of human tumors, the tumorigenic phenotype is reversible, suggesting that epigenetic mechanisms also contribute significantly to tumorigenesis in mice. It is not known whether these are the same epigenetic mechanisms in human(More)
Both genetic and epigenetic mechanisms contribute to meningioma development by altering gene expression and protein function. To determine the relative contribution of each mechanism to meningioma development, we used an integrative approach measuring copy number and DNA methylation changes genomewide. We found that genetic alterations affected 1.9%, 7.4%,(More)
Human cancer genome and epigenome projects aim to identify new cancer genes and targets for therapy that have been overlooked by conventional approaches. Here we integrated large-scale genomics and epigenomics of 31 human infiltrative gliomas and identified low-frequency deletion and highly recurrent epigenetic silencing of WNK2, encoding a putative(More)
Meningiomas are common brain tumors that are classified into three World Health Organization grades (benign, atypical and malignant) and are molecularly ill-defined tumors. The purpose of this study was identify molecular signatures unique to the different grades of meningiomas and to unravel underlying molecular mechanisms driving meningioma tumorigenesis.(More)
Meningiomas constitute the second most common central nervous system tumor, and yet relatively little is known about the molecular events that are important for the pathogenesis and malignant progression of these tumors. We have used serial analysis of gene expression to compare the transcriptomes of nonneoplastic meninges and meningiomas of all malignancy(More)
Tumors arise in part from the deleterious effects of genetic and epigenetic mechanisms on gene expression. In several mouse models of human tumors, the tumorigenic phenotype is reversible, suggesting that epigenetic mechanisms also contribute significantly to tumorigenesis in mice. It is not known whether these are the same epigenetic mechanisms in human(More)
  • 1