Learn More
BACKGROUND Gene set analysis (GSA) is a widely used strategy for gene expression data analysis based on pathway knowledge. GSA focuses on sets of related genes and has established major advantages over individual gene analyses, including greater robustness, sensitivity and biological relevance. However, previous GSA methods have limited usage as they cannot(More)
The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants(More)
Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza(More)
BACKGROUND Messenger RNA expression is regulated by a complex interplay of different regulatory proteins. Unfortunately, directly measuring the individual activity of these regulatory proteins is difficult, leaving us with only the resulting gene expression pattern as a marker for the underlying regulatory network or regulator-gene associations.(More)
MOTIVATION Signaling events that direct mouse embryonic stem (ES) cell self-renewal and differentiation are complex and accordingly difficult to understand in an integrated manner. We address this problem by adapting a Bayesian network learning algorithm to model proteomic signaling data for ES cell fate responses to external cues. Using this model we were(More)
BACKGROUND Typically, pooling of mRNA samples in microarray experiments implies mixing mRNA from several biological-replicate samples before hybridization onto a microarray chip. Here we describe an alternative smart pooling strategy in which different samples, not necessarily biological replicates, are pooled in an information theoretic efficient way.(More)
BACKGROUND Probability based statistical learning methods such as mutual information and Bayesian networks have emerged as a major category of tools for reverse engineering mechanistic relationships from quantitative biological data. In this work we introduce a new statistical learning strategy, MI3 that addresses three common issues in previous methods(More)
—To date, most studies on spam have focused only on the spamming phase of the spam cycle and have ignored the harvesting phase, which consists of the mass acquisition of email addresses. It has been observed that spammers conceal their identity to a lesser degree in the harvesting phase, so it may be possible to gain new insights into spammers' behavior by(More)
In this paper, we introduce PEBL, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel(More)
BACKGROUND Quantitative PCR (qPCR) is a workhorse laboratory technique for measuring the concentration of a target DNA sequence with high accuracy over a wide dynamic range. The gold standard method for estimating DNA concentrations via qPCR is quantification cycle () standard curve quantification, which requires the time- and labor-intensive construction(More)