Peter J. Woolf

Learn More
MOTIVATION Signaling events that direct mouse embryonic stem (ES) cell self-renewal and differentiation are complex and accordingly difficult to understand in an integrated manner. We address this problem by adapting a Bayesian network learning algorithm to model proteomic signaling data for ES cell fate responses to external cues. Using this model we were(More)
BACKGROUND Quantitative PCR (qPCR) is a workhorse laboratory technique for measuring the concentration of a target DNA sequence with high accuracy over a wide dynamic range. The gold standard method for estimating DNA concentrations via qPCR is quantification cycle () standard curve quantification, which requires the time- and labor-intensive construction(More)
—To date, most studies on spam have focused only on the spamming phase of the spam cycle and have ignored the harvesting phase, which consists of the mass acquisition of email addresses. It has been observed that spammers conceal their identity to a lesser degree in the harvesting phase, so it may be possible to gain new insights into spammers' behavior by(More)
In this paper, we introduce pebl, a Python library and application for learning Bayesian network structure from data and prior knowledge that provides features unmatched by alternative software packages: the ability to use interventional data, flexible specification of structural priors, modeling with hidden variables and exploitation of parallel processing.
MOTIVATION Many biomedical and clinical research problems involve discovering causal relationships between observations gathered from temporal events. Dynamic Bayesian networks are a powerful modeling approach to describe causal or apparently causal relationships, and support complex medical inference, such as future response prediction, automated learning,(More)
  • 1