Peter J Vikesland

Learn More
Triclosan (TCS; 5-chloro-2-(2,4-dichlorophenoxy)phenol), a common antimicrobial agent, may react with residual chlorine in tap water during transport to wastewater treatment plants or during chlorine disinfection of wastewater, generating chlorinated TCS derivatives (CTDs): 4,5-dichloro-2-(2,4-dichlorophenoxy)phenol (4-Cl-TCS),(More)
The widely used antimicrobial agent triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) readily reacts with free chlorine under drinking water treatment conditions. Overall second-order kinetics were observed, first-order in free chlorine and first-order in triclosan. Over the pH range of 4-11.5, the kinetics were pH sensitive as a result of the pH dependent(More)
Triclosan is a widely used antibacterial agent found in many personal hygiene products. Although it has previously been established that pure triclosan and free chlorine readily react, interactions between triclosan-containing consumer products and free chlorine have not previously been analyzed in great depth. Sixteen double-blinded solutions including(More)
Although granular iron permeable reactive barriers (PRBs) are increasingly employed to contain subsurface contaminants, information pertaining to system longevity is sparse. The present investigation redresses this situation by examining the long-term effects of carbonate, silica, chloride, and natural organic matter (NOM) on reactivity of Master Builders(More)
This investigation applied novel techniques for characterizing and fractionating nanosilver particles and aggregates and relating these measurements to toxicological endpoints. The acute toxicity of eight nanosilver suspensions of varying primary particle sizes (10-80 nm) and coatings (citrate, polyvinylpyrrolidone, EDTA, proprietary) was assessed using(More)
Incorporation of silver nanoparticles (AgNPs) into an increasing number of consumer products has led to concern over the potential ecological impacts of their unintended release to the environment. Dissolution is an important environmental transformation that affects the form and concentration of AgNPs in natural waters; however, studies on AgNP dissolution(More)
Triclosan, a widely used antimicrobial, is known to undergo phototransformation in aqueous solution to form 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD). Two sediment cores from a wastewater-impacted depositional zone of the Mississippi River were analyzed for triclosan by ultra performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS-Q(3))(More)
Chloramines have long been used to provide a disinfecting residual in distribution systems where it is difficult to maintain a free chlorine residual or where disinfection by-product (DBP) formation is of concern. While chloramines are generally considered less reactive than free chlorine, they are inherently unstable even in the absence of reactive(More)
The maintenance of monochloramine residuals in drinking water distribution systems is one technique often used to minimize microbial outbreaks and thereby maintain the safety of the water. Reactions between oxidizable species and monochloramine can however lead to undesirable losses in the disinfectant residual. Previous work has illustrated that the Fe(II)(More)
One promising, but currently underexplored, area for the future of drinking water pathogen monitoring stems from the development of nanomaterial-enabled detection strategies. The nanoscience literature contains numerous reports of nanoenabled biosensors; however, to date only a small percentage have focused on the detection of whole cells, in general, and(More)