Peter J. Schüffler

Learn More
Mass cytometry enables high-dimensional, single-cell analysis of cell type and state. In mass cytometry, rare earth metals are used as reporters on antibodies. Analysis of metal abundances using the mass cytometer allows determination of marker expression in individual cells. Mass cytometry has previously been applied only to cell suspensions. To gain(More)
Secreted Wnt signaling antagonists have recently been described as frequent targets of epigenetic inactivation in human tumor entities. Since gene silencing of certain Wnt antagonists was found to be correlated with adverse patient survival in cancer, we aimed at investigating a potential prognostic impact of the two Wnt antagonizing molecules WIF1 and DKK3(More)
BACKGROUND Aggressive mature B-cell non-Hodgkin's lymphomas (BCL) sharing features of Burkitt's lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) (intermediate BL/DLBCL) but deviating with respect to one or more characteristics are increasingly recognized. The limited knowledge about these biologically heterogeneous lymphomas hampers their assignment(More)
We propose an information processing pipeline for segmenting parts of the bowel in abdominal magnetic resonance images that are affected with Crohn's disease. Given a magnetic resonance imaging test volume, it is first oversegmented into supervoxels and each supervoxel is analyzed to detect presence of Crohn's disease using random forest (RF) classifiers.(More)
A key barrier to the realization of personalized medicine for cancer is the identification of biomarkers. Here we describe a two-stage strategy for the discovery of serum biomarker signatures corresponding to specific cancer-causing mutations and its application to prostate cancer (PCa) in the context of the commonly occurring phosphatase and tensin homolog(More)
We consider an automated processing pipeline for tissue micro array analysis (TMA) of renal cell carcinoma. It consists of several consecutive tasks, which can be mapped to machine learning challenges. We investigate three of these tasks, namely nuclei segmentation, nuclei classification and staining estimation. We argue for a holistic view of the(More)
The grading of inflammatory bowel disease (IBD) severity is important to determine the proper treatment strategy and to quantify the response to treatment. Traditionally, ileocolonoscopy is considered the reference standard for assessment of IBD. However, the procedure is invasive and requires extensive bowel preparation. Magnetic resonance imaging (MRI)(More)
Our proposed method combines semi supervised learning (SSL) and active learning (AL) for automatic detection and segmentation of Crohn's disease (CD) from abdominal magnetic resonance (MR) images. Random forest (RF) classifiers are used due to fast SSL classification and capacity to interpret learned knowledge. Query samples for AL are selected by a novel(More)