Learn More
Thioesterases (TEs) are classified into EC through EC based on their activities on different substrates, with many remaining unclassified (EC 3.1.2.-). Analysis of primary and tertiary structures of known TEs casts a new light on this enzyme group. We used strong primary sequence conservation based on experimentally proved proteins as the(More)
BACKGROUND Acyl-acyl carrier protein thioesterases (acyl-ACP TEs) catalyze the hydrolysis of the thioester bond that links the acyl chain to the sulfhydryl group of the phosphopantetheine prosthetic group of ACP. This reaction terminates acyl chain elongation of fatty acid biosynthesis, and in plant seeds it is the biochemical determinant of the fatty acid(More)
The first crystal structures of a two-domain, prokaryotic glucoamylase were determined to high resolution from the clostridial species Thermoanaerobacterium thermosaccharolyticum with and without acarbose. The N-terminal domain has 18 antiparallel strands arranged in beta-sheets of a super-beta-sandwich. The C-terminal domain is an (alpha/alpha)(6) barrel,(More)
Asn182 --> Ala Aspergillus awamori glucoamylase expressed in Saccharomyces cerevisiae had a first-order thermodeactivation coefficient 40% that of wild-type glucoamylase at pH 4.5 between 60 degrees and 65 degrees C, caused by the elimination of an Asn-Gly sequence subject to deamidation and eventual chain breakage. Above 70 degrees C, and at pHs 3.5 and(More)
Two forms of Ruminococcus flavefaciens FD-1 endoglucanase B, a member of glycoside hydrolase family 44, one with only a catalytic domain and the other with a catalytic domain and a carbohydrate binding domain (CBM), were produced. Both forms hydrolyzed cellotetraose, cellopentaose, cellohexaose, carboxymethylcellulose (CMC), birchwood and larchwood xylan,(More)
Sixteen primary sequences from five sub-families of fungal, yeast and bacterial glucoamylases were related to structural information from the model of the catalytic domain of Aspergillus awamori var. X100 glucoamylase obtained by protein crystallography. This domain is composed of thirteen alpha-helices, with five conserved regions defining the active site.(More)
The model of the catalytic domain of Aspergillus awamori var. X100 glucoamylase was related to 14 other glucoamylase protein sequences belonging to five subfamilies. Structural features of the different sequences were revealed by multisequence alignment following hydrophobic cluster analysis. The alignment agreed with the hydrophobic microdomains, normally(More)
Surfactant protein D (SP-D), a C-type lectin, is an important pulmonary host defense molecule. Carbohydrate binding is critical to its host defense properties, but the precise polysaccharide structures recognized by the protein are unknown. SP-D binding to Aspergillus fumigatus is strongly inhibited by a soluble beta-(1-->6)-linked but not by a soluble(More)
Both native Aspergillus niger glucoamylase and wild-type Aspergillus awamori glucoamylase expressed in Saccharomyces cerevisiae, which have identical primary structures, undergo hydrolysis at aspartyl bonds at low pH values and elevated temperatures. In native A.niger enzyme the Asp126-Gly127 bond was preferentially cleaved at pH 3.5, while at pH 4.5(More)
The Lamarckian genetic algorithm of AutoDock 3.0 was used to dock alpha-maltotriose, methyl alpha-panoside, methyl alpha-isopanoside, methyl alpha-isomaltotrioside, methyl alpha-(6(1)-alpha-glucopyranosyl)-maltoside, and alpha-maltopentaose into the closed and, except for alpha-maltopentaose, into the open conformation of the soybean beta-amylase active(More)