Learn More
OBJECTIVE Two experiments are presented examining adaptive and adaptable methods for invoking automation. BACKGROUND Empirical investigations of adaptive automation have focused on methods used to invoke automation or on automation-related performance implications. However, no research has addressed whether performance benefits associated with brain-based(More)
The present study examined the effects of an electroencephalographic- (EEG-) based system for adaptive automation on tracking performance and workload. In addition, event-related potentials (ERPs) to a secondary task were derived to determine whether they would provide an additional degree of workload specificity. Participants were run in an adaptive(More)
The performance of an adaptive automation system was evaluated using a cognitive vigilance task. Participants responded to the presence of a green "K" in an array of two, five, or nine distractor stimuli during a 40-min vigil. The array with the target stimulus was presented once each minute. Participants EEG was recorded and an engagement index (EI = 20 x(More)
The present study was designed to determine whether a biocybernetic, adaptive system could enhance vigilance performance. Participants were asked to monitor the repetitive presentation of white bars on a computer screen for occasional increases in length. An index of task engagement was derived from participants' electroencephalographic (EEG) activity and(More)
  • 1