Learn More
Plasma membrane Ca2+-ATPase isoform 2 (PMCA2) exhibits a highly restricted tissue distribution, suggesting that it serves more specialized physiological functions than some of the other isoforms. A unique role in hearing is indicated by the high levels of PMCA2 expression in cochlear outer hair cells and spiral ganglion cells. To analyze the physiological(More)
Neuroscience was an integral part of psychosomatic medicine at its inception in the early 20th century. Since the mid-20th century, however, psychosomatic research has largely ignored the brain. The field of neuroscience has burgeoned in recent years largely because a variety of powerful new methods have become available. Many of these methods allow for the(More)
Susceptibility to noise-induced hearing loss (NIHL) is poorly understood at the genetic level. Mice homozygous for a null mutation in the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) gene are deaf (Kozel et al., 1998). PMCA2 is expressed on outer hair cell stereocilia (Furuta et al., 1998). Fridberger et al. (1998) observed that the outer hair cell(More)
Individual animals and humans show differing susceptibility to noise damage even under very carefully controlled exposure conditions. This difference in susceptibility may be related to unknown genetic components. Common experimental animals (rats, guinea pigs, chinchillas, cats) are outbred-their genomes contain an admixture of many genes. Many mouse(More)
  • 1