Learn More
The nucleobase-cation-symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted(More)
The lactose transport protein (LacS) of Streptococcus thermophilus was amplified to levels as high as 8 and 30% of total membrane protein in Escherichia coli and S. thermophilus, respectively. In both organisms the protein was functional and the expression levels were highest with the streptococcal lacS promoter. Also a LacS deletion mutant, lacking the(More)
The rat transporter rCNT1 is the archetype of a family of concentrative nucleoside transporters (CNTs) found both in eukaryotes and in prokaryotes. In the present study we have used antibodies to investigate the subcellular distribution and membrane topology of this protein. rCNT1 was found to be expressed predominantly in the brush-border membranes of the(More)
The uptake of a sugar across the boundary membrane is a primary event in the nutrition of most cells, but the hydrophobic nature of the transport proteins involved makes them difficult to characterize. Their amino-acid sequences can, however, be determined by cloning and sequencing the corresponding gene (or complementary DNA). We have determined the(More)
Analyses of the sequences and structures of many transport proteins that differ in substrate specificity, direction of transport and mechanism of transport suggest that they form a family of related proteins. Their sequence similarities imply a common mechanism of action. This hypothesis provides an objective basis for examining their mechanisms of action(More)
gamma-Glutamyltranspeptidase (GGT) is a periplasmic enzyme of Helicobacter pylori implicated in its pathogenesis towards mammalian cells. We have cloned and expressed the H. pylori strain 26695 recombinant GGT protein in Escherichia coli and purified it to homogeneity. The purified protein exhibited hydrolysis activity with very high affinities for(More)
NMR methods have been adopted to observe directly the characteristics of substrate binding to the galactose-H+ symport protein GalP, in its native environment, the inner membranes of Escherichia coli. Sedimented inner-membrane vesicles containing the GalP protein, overexpressed to levels above 50% of total protein, were analyzed by 13C magic-angle spinning(More)
1. Strains of Escherichia coli were obtained containing either the AraE or the AraF transport system for arabinose. AraE+,AraF- strains effected energized accumulation and displayed an arabinose-evoked alkaline pH change indicative of arabinose-H+ symport. In contrast, AraE-,AraF+ strains accumulated arabinose but did not display H+ symport. 2. The ability(More)
Understanding how an amino acid sequence folds into a functional, three-dimensional structure has proved to be a formidable challenge in biological research, especially for transmembrane proteins with multiple alpha helical domains. Mechanistic folding studies on helical membrane proteins have been limited to unusually stable, single domain proteins such as(More)