Peter J. Detloff

Learn More
Mice representing precise genetic replicas of Huntington's disease (HD) were made using gene targeting to replace the short CAG repeat of the mouse Huntington's disease gene homolog (HDH:) with CAG repeats within the length range found to cause HD in humans. Mice with alleles of approximately 150 units in length exhibit late-onset behavioral and(More)
Huntington's disease (HD) is initiated by an abnormally expanded polyglutamine stretch in the huntingtin protein, conferring a novel property on the protein that leads to the loss of striatal neurons. Defects in mitochondrial function have been implicated in the pathogenesis of HD. Here, we have examined the hypothesis that the mutant huntingtin protein may(More)
While cilia are present on most cells in the mammalian body, their functional importance has only recently been discovered. Cilia formation requires intraflagellar transport (IFT), and mutations disrupting the IFT process result in loss of cilia and mid-gestation lethality with developmental defects that include polydactyly and abnormal neural tube(More)
The mutations responsible for several human neurodegenerative disorders are expansions of translated CAG repeats beyond a normal size range. To address the role of repeat context, we have introduced a 146-unit CAG repeat into the mouse hypoxanthine phosphoribosyltransferase gene (Hprt). Mutant mice express a form of the HPRT protein that contains a long(More)
Huntington disease (HD) is a dominantly inherited human neurodegenerative disorder characterized by motor deficits, cognitive impairment, and psychiatric symptoms leading to inexorable decline and death. Since the identification of the huntingtin gene and the characteristic expanded CAG repeat/polyglutamine mutation, multiple murine genetic models and one(More)
Huntington's disease (HD) is caused by a CAG repeat expansion that is unstable upon germ-line transmission and exhibits mosaicism in somatic tissues. We show that region-specific CAG repeat mosaicism profiles are conserved between several mouse models of HD and therefore develop in a predetermined manner. Furthermore, we demonstrate that these synchronous,(More)
Huntington disease is caused by the expansion of a CAG repeat encoding an extended glutamine tract in a protein called huntingtin. Although the mutant protein is widely expressed, the earliest and most striking neuropathological changes are observed in the striatum. Here we show dramatic mutation length increases (gains of up to 1000 CAG repeats) in human(More)
The aggregation of mutant polyglutamine (polyQ) proteins has sparked interest in the role of protein quality-control pathways in Huntington's disease (HD) and related polyQ disorders. Employing a novel knock-in HD mouse model, we provide in vivo evidence of early, sustained alterations of autophagy in response to mutant huntingtin (mhtt). The HdhQ200(More)
Huntington disease (HD) is a devastating, late-onset, inherited neurodegenerative disorder that manifests with personality changes, movement disorders, and cognitive decline. It is caused by a CAG repeat expansion in exon 1 of the HTT gene that translates to a polyglutamine tract in the huntingtin protein (HTT). The formation of HTT fragments has been(More)
Heteroduplexes formed between genes on homologous chromosomes are intermediates in meiotic recombination. In the HIS4 gene of Saccharomyces cerevisiae, most mutant alleles at the 5' end of the gene have a higher rate of meiotic recombination (gene conversion) than mutant alleles at the 3' end of the gene. Such gradients are usually interpreted as indicating(More)