Peter J Christie

Learn More
Type IV secretion (T4S) systems are ancestrally related to bacterial conjugation machines. These systems assemble as a translocation channel, and often also as a surface filament or protein adhesin, at the envelopes of Gram-negative and Gram-positive bacteria. These organelles mediate the transfer of DNA and protein substrates to phylogenetically diverse(More)
Bacterial conjugation systems are highly promiscuous macromolecular transfer systems that impact human health significantly. In clinical settings, conjugation is exceptionally problematic, leading to the rapid dissemination of antibiotic resistance genes and other virulence traits among bacterial populations. Recent work has shown that several pathogens of(More)
Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process;(More)
Type IV secretion systems (T4SSs) are versatile secretion systems that are found in both Gram-negative and Gram-positive bacteria and secrete a wide range of substrates, from single proteins to protein–protein and protein–DNA complexes. They usually consist of 12 components that are organized into ATP-powered, double-membrane-spanning complexes. The(More)
Changes in anthocyanin content and transcript abundance for genes whose products function in general phenylpropanoid metabolism and the anthocyanin pathway were monitored in maize (Zea mays L.) seedlings during short-term, low-temperature treatment. Anthocyanin and mRNA abundance in sheaths of maize seedlings increased with the severity and duration of(More)
The fee-bee song of male black-capped chickadees (Poecile atricapillus) is considered a single-type song that singers transpose up and down a continuous frequency range. While the ability to shift song pitch in this species provides a mechanism for song matching as an aversive signal in male-male territorial song contests, the functional significance of(More)
Bacteria use type IV secretion systems for two fundamental objectives related to pathogenesis — genetic exchange and the delivery of effector molecules to eukaryotic target cells. Whereas gene acquisition is an important adaptive mechanism that enables pathogens to cope with a changing environment during invasion of the host, interactions between effector(More)
Several bacterial pathogens utilize conjugation machines to export effector molecules during infection. Such systems are members of the type IV or 'adapted conjugation' secretion family. The prototypical type IV system is the Agrobacterium tumefaciens T-DNA transfer machine, which delivers oncogenic nucleoprotein particles to plant cells. Other pathogens,(More)
The translocation of DNA across biological membranes is an essential process for many living organisms. In bacteria, type IV secretion systems (T4SS) are used to deliver DNA as well as protein substrates from donor to target cells. The T4SS are structurally complex machines assembled from a dozen or more membrane proteins in response to environmental(More)