Peter J. Catto

Learn More
Citation McDermott, R. M. et al. " Edge radial electric field structure and its connections to H-mode confinement in Alcator C-Mod plasmas. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available.(More)
The transport of angular momentum due to neutral atoms in the tokamak edge is calculated and shown to be sensitive to the poloidal location of the neutrals. In the absence of external momentum sources, the edge plasma is predicted to rotate spontaneously in the opposite direction to the plasma current, at a speed proportional to the radial ion temperature(More)
Starting from the complete short mean-free path fluid equations describing magnetized plasmas, assuming that plasma pressure is small compared to magnetic pressure, considering field-aligned plasma fluctuations, and adopting an ordering in which the plasma species flow velocities are much smaller than the ion thermal speed, a system of non-linear equations(More)
We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength(More)
A low flow, δf gyrokinetic formulation to obtain the intrinsic rotation profiles is presented. The momentum conservation equation in the low flow ordering contains new terms, neglected in previous first principles formulations, that may explain the intrinsic rotation observed in tokamaks in the absence of external sources of momentum. The intrinsic rotation(More)
Traditional electrostatic gyrokinetic treatments consist of a gyrokinetic Fokker-Planck equation and a gyrokinetic quasineutrality equation. Both of these equations can be found up to second order in a gyroradius over macroscopic length expansion in some simplified cases, but the versions implemented in codes are typically only first order. In axisymmetric(More)
A technique is developed and applied for analyzing pedestal and internal transport barrier (ITB) regions in a tokamak by formulating a special version of gyrokinetics. In contrast to typical gyrokinetic treatments, canonical angular momentum is taken as the gyrokinetic radial variable rather than the radial guiding center location. Such an approach allows(More)
The strong radial electric field in a subsonic tokamak pedestal modifies the neoclassical ion parallel flow velocity, as well as the radial ion heat flux. Existing experimental evidence of the resulting alteration in the poloidal flow of a trace impurity is discussed. We then demonstrate that the modified parallel ion flow can noticeably enhance the(More)