Learn More
OBJECTIVE To explain and underscore the use of principal component analysis in clinical biomechanics as an expedient, unbiased means for reducing high-dimensional data sets to a small number of modes or structures, as well as for teasing apart structural (invariant) and variable components in such data sets. DESIGN The method is explained formally and(More)
Recently, two methods for quantifying a system's dynamic stability have been applied to human locomotion: local stability (quantified by finite time maximum Lyapunov exponents, lambda(S-stride) and lambda(L-stride)) and orbital stability (quantified as maximum Floquet multipliers, MaxFm). Thus far, however, it has remained unclear how many data points are(More)
In a recent study, De Haart et al. (Arch Phys Med Rehabil 85:886–895, 2004) investigated the recovery of balance in stroke patients using traditional analyses of center-of-pressure (COP) trajectories to assess the effects of health status, rehabilitation, and task conditions like standing with eyes open or closed and standing while performing a cognitive(More)
The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive(More)
Several efforts have been made to study gait stability using measures derived from nonlinear time-series analysis. The maximum finite time Lyapunov exponent (lambda(max)) quantifies how a system responds to an infinitesimally small perturbation. Recent studies suggested that slow walking leads to lower lambda(max) values, and thus is more stable than fast(More)
The effects of correct and transformed visual feedback on rhythmic unimanual visuo-motor tracking were examined, focusing on tracking performance (accuracy and stability) and visual search behavior. Twelve participants (reduced to 9 in the analyses) manually tracked an oscillating visual target signal in phase (by moving the hand in the same direction as(More)
In the literature on motor control, three theoretical perspectives on the relation between discrete and cyclical movements may be discerned: (a) cyclical movements are concatenated discrete movements; (b) discrete movements are a limiting case of cyclical movements, and (c) discrete and cyclical movements are motor primitives that may be combined but are(More)
Kinematic variability is caused, in part, by force fluctuations. It has been shown empirically and numerically that the effects of force fluctuations on kinematics can be suppressed by increasing joint impedance. Given that force variability increases with muscular fatigue, we hypothesized that joint impedance would increase with fatigue to retain a(More)
It has frequently been proposed that lowering walking speed is a strategy to enhance gait stability and to decrease the probability of falling. However, previous studies have not been able to establish a clear relation between walking speed and gait stability. We investigated whether people do indeed lower walking speed when gait stability is challenged,(More)