Learn More
Human catecholaminergic neuroblastoma cells (SH-SY5Y) have been widely used in different neurochemical investigations. Quite often these cells are induced to differentiation by various agents, such as staurosporine and retinoic acid. Interestingly, even though both staurosporine and retinoic acid induce similar morphological differentiation in SH-SY5Y(More)
Systemic injection of kainic acid (KA) induces limbic seizures in rats, which resemble human temporal lobe epilepsy, the most common form of adult human epilepsy. In this study, we have investigated KA-elicited limbic seizures in the rats by correlating the severity of the seizure attacks with the expression of hippocampal heat shock protein-70 (HSP70)(More)
Semicarbazide-sensitive amine oxidase (SSAO) catalyzes the conversion of methylamine to formaldehyde. This enzyme is located on the surface of the cytoplasmic membrane and in the cytosol of vascular endothelial cells, smooth muscle cells, and adipocytes. Increased SSAO activity has been found in patients with diabetes mellitus, chronic heart failure, and(More)
DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine], a selective noradrenaline (NA) uptake blocker, is capable of inducing long-lasting depletion of NA in some noradrenergic axon terminals and of subsequently causing cell death to NA neuronal cell bodies in rodents. R(-)-Deprenyl, a selective monoamine oxidase (MAO)-B inhibitor, has been shown to be(More)
Aminoguanidine, a nucleophilic hydrazine, has been shown to be capable of blocking the formation of advanced glycation end products. It reduces the development of atherosclerotic plaques and prevents experimental diabetic nephropathy. We have found that aminoguanidine is also quite potent at inhibiting semicarbazide-sensitive amine oxidase (SSAO) both in(More)
A series of aliphatic propargylamine derivatives has been synthesized. Some of them possess highly potent, irreversible, selective, inhibitory activity toward monoamine oxidase B (MAO-B). The potency of the inhibitors is related to chain length and substitution of a hydrogen on the terminal carbon of the aliphatic chain. MAO inhibitory activity as assessed(More)
Haloperidol has recently been found to be metabolized to its pyridinium ion (HP+). This conversion of haloperidol to HP+ appears to be similar to the activation of the dopaminergic neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to N-methyl-4-phenyl pyridinium ion (MPP+). MPP+ is responsible for the damage of striatal dopaminergic neurons(More)
The effects of haloperidol and its metabolites on dopamine (DA) and noradrenaline (NA) uptake were investigated. Both direct uptake of [3H]DA and [3H]NA into the rat striatal and hippocampus slices and binding of a specific DA uptake inhibitor [3H]GBR-12935 were employed in the present study. Haloperidol pyridinium (HP+), haloperidol(More)
A Gram-positive coccus-shaped bacterium capable of synthesizing higher relative molecular weight (M(r)) poly-hydroxybutyrate (PHB) was isolated from sesame oil and identified as Staphylococcus epidermidis (by Microbial ID, Inc., Newark, NJ). The experiment was conducted by shake flask fermentation culture using media containing fructose. Cell growth up to a(More)
Xenobiotic branched carboxylic acids (BCAs) discharged by industries are often persistent in biological wastewater treatment systems and end up in water and sediments. In this study, the degradation of 12 typical BCAs in an anaerobic environment of river sediment was studied in vitro using enrichment shake-flask cultures. The anaerobic consortium taken from(More)