Learn More
The mechanisms for the removal of heavy metals during secondary biological treatment of wastewater, with particular emphasis on the activated sludge process, are considered. It is concluded that the predominant mechanism is the entrapment and co-settlement of insoluble metal species in the mixed liquor (biomass). Secondary extracellular polymeric materials,(More)
Seasonal periods of high rainfall have been shown to cause elevated natural organic matter (NOM) loadings at treatment works. These high levels lead to difficulties in removing sufficient NOM to meet trihalomethane (THM) standards, and hence better alternative treatments are required. Here the removal of NOM was investigated by a new ion exchange process(More)
The effect of upstream coagulant dosing for full-flow microfiltration of an upland-reservoir water has been investigated. The process, run under conditions of constant flux and pH and based on a ferric salt, is compared with a published study of another full-flow process based on alum dosing and operated at constant pressure and coagulant concentration. The(More)
The current sources of copper and zinc in municipal wastewaters have been considered, and the changes in the concentrations and quantities of these two elements entering sewage treatment works over the last three decades have been calculated. The concentrations and quantities of the heavy metals cadmium, chromium, copper, mercury, nickel, lead and zinc,(More)
The fate and removal of permethrin during conventional wastewater treatment were evaluated at pilot-plant scale at different concentrations of mixed liquor suspended solids (MLSS) and, hence, different solids retention times (SRT). At feed concentrations of 0.26-0.86 microg L(-1), the permethrin was removed by primary treatment at an efficiency rate of 37%,(More)
Quantification and comparison of the dewatering characteristics of fifteen sewage sludges from a range of digestion scenarios are described. The method proposed uses laboratory dewatering measurements and integrity analysis of the extracted material properties. These properties were used as inputs into a model of filtration, the output of which provides the(More)
A potable water treatment plant, supplied from a low NOM (natural organic matter), low turbidity source with precoagulation and two-stage pressure sand filtration, had a MF (microfiltration) membrane process added to meet UK Water Regulations. An autopsy of the membrane modules showed that despite upstream coagulation/filtration with chlorination, a biofilm(More)
  • 1