Peter H. Millard

Learn More
Understanding the pattern of length of stay in institutional long-term care has important practical implications in the management of long-term care. Furthermore, residents' attributes are believed to have significant effects on these patterns. In this paper, we present a model-based approach to extract, from a routinely gathered administrative social care(More)
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Westminster's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating(More)
In the UK, the split between opposition and supporters views of the National Health Service (NHS) performance ratings system is growing. Objective argument and consensus would be facilitated if a methodology was developed which showed the cause and effect relationships between the components of the performance rating system. The NHS hospital trust(More)
Clinical investigators, health professionals and managers are often interested in developing criteria for clustering patients into clinically meaningful groups according to their expected length of stay. In this paper, we propose two novel types of survival trees; phase-type survival trees and mixed distribution survival trees, which extend previous work on(More)
A frequently chosen time window in defining readmission is 28 days after discharge. Yet in the literature, shorter and longer periods such as 14 days or 90-180 days have also been suggested. In this paper, we develop a modeling approach that systematically tackles the issue surrounding the appropriate choice of a time window as a definition of readmission.(More)