Learn More
Transcription factors of the Myc proto-oncogene family promote cell division, but how they do this is poorly understood. Here we address the functions of Drosophila Myc (dMyc) during development. Using mosaic analysis in the fly wing, we show that loss of dMyc retards cellular growth (accumulation of cell mass) and reduces cell size, whereas dMyc(More)
Experiments in both vertebrates and invertebrates have illustrated the competitive nature of growth and led to the idea that competition is a mechanism of regulating organ and tissue size. We have assessed competitive interactions between cells in a developing organ and examined their effect on its final size. We show that local expression of the Drosophila(More)
The proto-oncogene Myc is already known to affect many cellular processes, but recent experiments in the fruit fly Drosophila melanogaster have revealed yet a new facet of Myc. Neighboring cells were shown to compare their Myc levels and the losers (cells with lower Myc activity) were actively eliminated. This phenomenon is called "cell competition," and it(More)
Myc is a transcription factor with diverse biological effects ranging from the control of cellular proliferation and growth to the induction of apoptosis. Here we present a comprehensive analysis of the transcriptional targets of the sole Myc ortholog in Drosophila melanogaster, dMyc. We show that the genes that are down-regulated in response to dmyc(More)
Multimerization of GAAANN generates sequences frequent in virus-inducible promoters. We distinguished different types of (GAAANN)4 sequences mediating virus inducibility. Type I (NN = GT, GC, CT, or CC) responds to IFNs and to IRF-1 and causes silencing. Type II (NN = TG) and type III (NN = CG) neither silence nor respond to IRF-1 or IFN. Type III mediates(More)
Myc proteins are essential regulators of animal growth during normal development, and their deregulation is one of the main driving factors of human malignancies. They function as transcription factors that (in vertebrates) control many growth- and proliferation-associated genes, and in some contexts contribute to global gene regulation. We combine(More)
Drosophila melanogaster has long been a prime model organism for developmental biologists. During their work, they have established a large collection of techniques and reagents. This in turn has made fruit flies an attractive system for many other biomedical researchers who have otherwise no background in fly biology. This review intends to help Drosophila(More)
Every two years, biologists and oncologists gather in Lau-sanne, on the shores of Lake Geneva, to discuss the latest advances in research into the cell and molecular biology of cancer. Presentations at the most recent of these meetings covered a wide range of topics, a small selection of which is described here. Several talks were devoted to the cellular(More)
  • 1