Learn More
Currents generated by depolarizing voltage pulses were recorded in neurons from the pyramidal cell layer of the CA1 region of rat or guinea pig hippocampus with single electrode voltage-clamp or tight-seal whole-cell voltage-clamp techniques. In neurons in situ in slices, and in dissociated neurons, subtraction of currents generated by identical(More)
Neurons were acutely dissociated from the CA1 region of hippocampal slices from guinea pigs. Whole-cell recording techniques were used to record and control membrane potential. When the electrode contained KF, the average resting potential was about -40 mV and action potentials in cells at -80 mV (current-clamped) had an amplitude greater than 100 mV. Cells(More)
1. Whole-cell patch-clamp recordings from freshly dissociated rat CA1 neurons revealed a large transient Na+ current (INa,T) and a smaller, inactivation-resistant persistent Na+ current (INa,P). Both currents could be blocked with TTX. 2. The average current densities of INa,T and INa,P in thirty cells were 111.0 +/- 9.62 and 0.87 +/- 0.13 pA pF-1,(More)
Techniques for extracting small, single channel ion currents from background noise are described and tested. It is assumed that single channel currents are generated by a first-order, finite-state, discrete-time, Markov process to which is added 'white' background noise from the recording apparatus (electrode, amplifiers, etc). Given the observations and(More)
1. The transient increase in secretion of quanta of acetylcholine (phasic secretion) produced by an action potential or brief depolarizing current pulse in mouse phrenic nerve terminals was examined. 2. Following an activating stimulus, there was a brief delay (minimum latency) followed by a sigmoidal increase in secretion which then decayed exponentially.(More)
A comparison is made of two types of chloride-selective channel in skeletal muscle sarcoplasmic reticulum (SR) vesicles incorporated into lipid bilayers. The I/V relationships of both channels, in 250/50 mM Cl- (cis/trans), were linear between -20 and +60 mV (cis potential,) reversed near Ecl and had slope conductances of approximately 250 pS for the big(More)
In frog sartorius muscle fibers in which the transverse tubular system has been disrupted by treatment with glycerol, action potentials which are unaccompanied by twitches can be recorded. These action potentials appear to be the same as those recorded in normal fibers except that the early afterpotential usually consists of a small hyperpolarization of(More)
Asymmetrical charge movements (Q) were recorded from the voltage-clamped ends of muscle fibres in extensor digitorum longus (e.d.l.) and soleus muscles from rats. Tetracaine (2 mM) was added to solutions to prevent contraction. In both muscles the relationship between Q and membrane potential (V) was S-shaped and could be described by the Boltzmann-type(More)
1. Action potentials recorded in the soma of R15 neurones in the abdominal ganglia of Aplysia juliana were not suppressed by selective inhibition of either Na or Ca conductance alone. It was necessary to block both conductances to suppress action potentials. 2. Membrane currents generated by step depolarizations of the soma consisted of early transient and(More)