Learn More
The RNA bacteriophage MS2 is a convenient model system for the study of protein-RNA interactions. The MS2 coat protein achieves control of two distinct processes--sequence-specific RNA encapsidation and repression of replicase translation--by binding to an RNA stem-loop structure of 19 nucleotides containing the initiation codon of the replicase gene. The(More)
The structure of the turnip crinkle virus (TCV) coat protein and coat protein gene has been examined by cDNA cloning, nucleotide sequencing and high-resolution mRNA mapping. We have cloned a 1450-nucleotide cDNA fragment, representing the 3' end of the TCV genome, using genomic RNA polyadenylated in vitro as the reverse transcriptional template. Nucleic(More)
Three hypotheses concerning potential genetic benefits of female multiple mating behaviour are evaluated for the common shrew. In a high-density population, many successful copulations took place between individuals estimated to be close relatives (e.g. full or half siblings). Juveniles resulting from such matings tended to be relatively small at weaning,(More)
Dissociation of turnip crinkle virus (TCV) at elevated pH and ionic strength produces free dimers of the coat protein and a ribonucleoprotein complex that contains the viral RNA, six coat-protein subunits, and the minor protein species, p80 (a covalently linked coat-protein dimer). This "rp-complex" is stable for several days in high salt at pH 8.5.(More)
Long RNAs often exist as multiple conformers in equilibrium. For the genomes of single-stranded RNA viruses, one of these conformers must include a compacted state allowing the RNA to be confined within the virion. We have used single molecule fluorescence correlation spectroscopy to monitor the conformations of viral genomes and sub-fragments in the(More)
How, and why, different proteins form amyloid fibrils is most often studied in vitro using a single purified protein sequence. However, many amyloid diseases involve co-aggregation of different protein species, including proteins with/without post-translational modifications (e.g., different strains of PrP), proteins of different length (e.g.,(More)
Amyloid fibrils can be generated from proteins with diverse sequences and folds. Although amyloid fibrils assembled in vitro commonly involve a single protein precursor, fibrils formed in vivo can contain more than one protein sequence. How fibril structure and stability differ in fibrils composed of single proteins (homopolymeric fibrils) from those(More)
We develop the logic of assessment of sperm competition risk by individual males where the mechanism of sperm competition follows a 'loaded raffle' (first and second inseminates of a female have unequal prospects). Male roles (first or second to mate) are determined randomly. In model 1, males have no information about the risk associated with individual(More)
Sexual conflict has been suggested to be important in the evolution of reproductive traits, with much recent theoretical and empirical evidence emphasizing its role in generating sexually antagonistic coevolution in the context of promiscuous mating. Here we shift attention to the role of sexual conflict in a monogamous mating context. Conflicts can arise,(More)
The formation of a protective protein container is an essential step in the life-cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in parallel with genome packaging in a co-assembly process. Previously, it had been thought that this process can be explained entirely by electrostatics. Inspired by recent single-molecule(More)