Learn More
Human cortical and trabecular bones are formed by individual osteons and bone packets, respectively, which are produced at different time points during the (re)modeling cycle by the coupled activity of bone cells. This leads to a heterogeneously mineralized bone material with a characteristic bone mineralization density distribution (BMDD) reflecting bone(More)
The degree of mineralization of bone matrix is an important factor in determining the mechanical competence of bone. The remodeling and modeling activities of bone cells together with the time course of mineralization of newly formed bone matrix generate a characteristic bone mineralization density distribution (BMDD). In this study we investigated the(More)
Several recent results are suggesting that the collagen packing in mineralized tissues is much less regular than in the case of other nonmineralizing collagen, e.g., rat tail tendon. To clarify this question we have investigated the molecular arrangement in mineralized and unmineralized turkey leg tendon as a model for the collagen of mineralized tissues.(More)
In biomineralized tissues such as bone, the recurring structural motif at the supramolecular level is an anisotropic stiff inorganic component reinforcing the soft organic matrix. The high toughness and defect tolerance of natural biomineralized composites is believed to arise from these nanometer scale structural motifs. Specifically, load transfer in bone(More)
Natural materials such as bone, tooth, and nacre are nanocomposites of proteins and minerals with superior strength. Why is the nanometer scale so important to such materials? Can we learn from this to produce superior nanomaterials in the laboratory? These questions motivate the present study where we show that the nanocomposites in nature exhibit a(More)
Both elastic modulus and fracture stress are known to increase with the amount of mineral deposited within collagen fibrils. Current mechanical models of mineralized fibrils, where mineral platelets are arranged in parallel arrays, reproduce the first effect but fail to predict an increase in fracture stress. Here, we propose a model with a staggered array(More)
Osteogenesis imperfecta (OI) is a disease attributable to any of a large number of possible mutations of type I collagen. The disease is clinically characterized in part by highly brittle bone, the cause of this feature being unknown. Recently a mouse model of OI, designated as osteogenesis imperfecta murine (oim), and having a well defined genetic(More)
Collagen fibrils resemble smectic, liquid crystals in being highly ordered axially but relatively disordered laterally. In some connective tissues, x-ray diffraction reveals three-dimensional crystallinity in the molecular packing within fibrils, although the continued presence of diffuse scatter indicates significant underlying disorder. In addition,(More)
The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the(More)
Tissue formation is determined by uncountable biochemical signals between cells; in addition, physical parameters have been shown to exhibit significant effects on the level of the single cell. Beyond the cell, however, there is still no quantitative understanding of how geometry affects tissue growth, which is of much significance for bone healing and(More)