Peter F. Neher

Learn More
PURPOSE Phantom-based validation of diffusion-weighted image processing techniques is an important key to innovation in the field and is widely used. Openly available and user friendly tools for the flexible generation of tailor-made datasets for the specific tasks at hand can greatly facilitate the work of researchers around the world. METHODS We present(More)
BACKGROUND Diffusion-MRI provides a unique window on brain anatomy and insights into aspects of tissue structure in living humans that could not be studied previously. There is a major effort in this rapidly evolving field of research to develop the algorithmic tools necessary to cope with the complexity of the datasets. OBJECTIVES This work illustrates(More)
BACKGROUND AND PURPOSE Diffusion tensor imaging (DTI) tractography reconstruction of white matter pathways can help guide brain tumor resection. However, DTI tracts are complex mathematical objects and the validity of tractography-derived information in clinical settings has yet to be fully established. To address this issue, we initiated the DTI Challenge,(More)
Many different tractography approaches and corresponding isolated evaluation attempts have been presented over the last years, but a comparative and quantitative evaluation of tractography algorithms still remains a challenge, particularly in-vivo. The recently presented evaluation framework Tractometer is the first attempt to approach this challenge in a(More)
We present a fiber tractography approach based on a random forest classification and voting process, guiding each step of the streamline progression by directly processing raw diffusion-weighted signal intensities. For comparison to the state-of-the-art, i.e. tractography pipelines that rely on mathematical modeling, we performed a quantitative and(More)
In this paper, we take full advantage of the information contained in diffusion-weighted images (DWI) to extract a major brain white matter bundle, the cortico-spinal tract (CST). The gist of the method is to combine cutting-edge machine learning, registration and tractography techniques into an automatic pipeline that takes the DWI as an only input,(More)