Peter F. M. van der Ven

Learn More
Mechanical tension is an ever-present physiological stimulus essential for the development and homeostasis of locomotory, cardiovascular, respiratory, and urogenital systems. Tension sensing contributes to stem cell differentiation, immune cell recruitment, and tumorigenesis. Yet, how mechanical signals are transduced inside cells remains poorly understood.(More)
This report describes a phenotyping study of differentiating human skeletal muscle cells in tissue culture. Satellite cells (adult myoblasts), isolated from biopsy material, showed a proliferative behaviour in high-nutrition medium, but fused to form myotubes when grown in low-nutrition medium. The expression and structural organization of the intermediate(More)
Filamin, also called actin binding protein-280, is a dimeric protein that cross-links actin filaments in the cortical cytoplasm. In addition to this ubiquitously expressed isoform (FLN1), a second isoform (ABP-L/g-filamin) was recently identified that is highly expressed in mammalian striated muscles. A monoclonal antibody was developed, that enabled us to(More)
Myofibrillar myopathies (MFMs) are rare inherited or sporadic progressive neuromuscular disorders with considerable clinical and genetic heterogeneity. In the current study, we have analyzed histopathological and immunohistochemical characteristics in genetically identified MFMs. We performed a morphological and morphometrical study in a cohort of 24(More)
Ecto-ATPase activity of Xenopus oocytes was studied by measuring the production of inorganic phosphate (Pi) from the breakdown of extracellular ATP. Enzyme activity involved Ca2+/Mg2+-dependent and Ca2+/Mg2+-independent dephosphorylation of ATP. Ca2+/Mg2+-dependent ecto-ATPase was active over a limited range of 0.01–1.0 mM ATP, while Ca2+/Mg2+-independent(More)
Plectin is a high-molecular mass protein (≈ 500 kd) that binds actin, intermediate filaments, and microtubules. Mutations of the plectin gene cause a generalized blistering skin disorder and muscular dystrophy. In adult muscle, plectin is colocalized with desmin at structures forming the intermyofibrillar scaffold and beneath the plasma membrane. To study(More)
The development of myofibrils involves the formation of contractile filaments and their assembly into the strikingly regular structure of the sarcomere. We analysed this assembly process in cultured human skeletal muscle cells and in rat neonatal cardiomyocytes by immunofluorescence microscopy using antibodies directed against cytoskeletal and contractile(More)
Previous work has shown that mutations in muscle LIM protein (MLP) can cause hypertrophic cardiomyopathy (HCM). In order to gain an insight into the molecular basis of the disease phenotype, we analysed the binding characteristics of wild-type MLP and of the (C58G) mutant MLP that causes hypertrophic cardiomyopathy. We show that MLP can form a ternary(More)
The term filaminopathy was introduced after a truncating mutation in the dimerization domain of filamin C (FLNc) was shown to be responsible for a devastating muscle disease. Subsequently, the same mutation was found in patients from diverse ethnical origins, indicating that this specific alteration is a mutational hot spot. Patients initially present with(More)
Plectin is a high molecular mass protein (ca 530 kDa) that binds actin, intermediate filaments, and microtubules. Mutations of the human plectin gene cause epidermolysis bullosa simplex with muscular dystrophy. In mature human skeletal muscle, plectin is localized between neighboring myofibrils and between myofibrils and the sarcolemma, both at the level of(More)