Peter Ellmark

Learn More
The driving force behind oncoproteomics is to identify biomarker signatures associated with a particular malignancy. Here, we have for the first time used large-scale recombinant scFv antibody microarrays in an attempt to classify metastatic breast cancer versus healthy controls, based on differential protein expression profiling of whole serum samples.(More)
A technique of fluorescence multiplexing is described for analysis of the plasma membrane proteome of colorectal cancer cells from surgically resected specimens, enabling detection and immunophenotyping when the cancer cells are in the minority. A single-cell suspension was prepared from a colorectal tumour, and the mixed population of cells was captured on(More)
Antibody microarray based technology is a powerful emerging tool in proteomics, target discovery, and differential analysis. Here, we report the first study where recombinant antibody fragments have been used to construct large scale antibody microarrays, composed of 127 different antibodies against mostly immunoregulatory antigens. The arrays were based on(More)
PURPOSE Local administration of immune-activating antibodies may increase the efficacy and reduce the immune-related adverse events associated with systemic immunotherapy of cancer. Here, we report the development and affinity maturation of a fully human agonistic CD40 antibody (IgG1), ADC-1013. EXPERIMENTAL DESIGN We have used molecular engineering to(More)
Stimulation of CD40 on dendritic cells to expand and activate tumor-specific T cells and generate anticancer immunity is an attractive therapeutic approach. Since CD40 agonists exert their effects upstream of checkpoint inhibitors, including PD-1 or PD-L1 antagonists, they are ideal candidates for combination regimens.
Agonistic anti-CD40 monoclonal antibodies (mAbs) hold great potential for cancer immunotherapy. However, systemic administration of anti-CD40 mAbs can be associated with severe side effects, such as cytokine release syndrome and liver damage. With the aim to increase the immunostimulatory potency as well as to achieve a local drug retention of anti-CD40(More)
The emerging field of proteomics has created a need for new high-throughput methodologies for the analysis of gene products. An attractive approach is to develop systems that allow for clonal selection of interacting protein pairs from large molecular libraries. In this study, we have characterized a novel approach for identification and selection of(More)
The advent of multiplexing technologies has raised the possibility that disease states can be defined using discrete genomic and proteomic patterns or signatures. However, this emerging area has been limited by the 'content problem', arising from the uncertainty of which molecules to focus on. The human cluster of differentiation (CD) antigens are expressed(More)
The effect of CD40 ligation on infection by HIV-1 primary isolates with different R5 phenotypes was evaluated with a novel set of anti-CD40 monoclonal antibodies originating from a human phage display library. Five human monoclonal anti-CD40 antibodies of IgG1 subtype characterized by the ability to activate B cells via CD40 were tested for induction of the(More)
Human antibodies directed towards functionally associated tumor antigens have great potentials as adjuvant treatment in cancer therapy. Here we describe an efficient subtractive approach to select single chain Fv (scFv) antibodies, specifically binding to unknown rapidly internalizing tumor-associated antigens (TAA) on human breast and pancreatic carcinoma(More)