Peter Dietrich

Learn More
The direct-push permeameter (DPP) is a promising approach for obtaining high-resolution information about vertical variations in hydraulic conductivity (K) in shallow unconsolidated settings. This small-diameter tool, which consists of a short screened section with a pair of transducers inset in the tool near the screen, is pushed into the subsurface to a(More)
BACKGROUND The objective of this study was to investigate risk factors associated with persistent or recurrent upper extremity and neck pain among engineering graduate students. METHODS A random sample of 206 Electrical Engineering and Computer Science (EECS) graduate students at a large public university completed an online questionnaire. RESULTS(More)
In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests(More)
Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants;(More)
In a strong laser field, electrons tunnel from an atom at a rate determined by the instantaneous field. If the pulse is only a few cycles in duration, the highly nonlinear nature of tunnel ionization ensures that the resultant electron wave packet is primarily formed in less than one period. Measuring the direction of above-threshold-ionization electrons(More)
Monitoring of contaminant concentrations, e.g., for the estimation of mass discharge or contaminant degradation rates, often is based on point measurements at observation wells. In addition to the problem, that point measurements may not be spatially representative, a further complication may arise due to the temporal dynamics of groundwater flow, which may(More)
Intense linearly polarized light induces a dipole force that aligns an anisotropic molecule to the direction of the field polarization. Rotating the polarization causes the molecule to rotate. Using femtosecond laser technology, we accelerate the rate of rotation from 0 to 6 THz in 50 ps, spinning chlorine molecules from near rest up to angular momentum(More)
The desire to obtain a better understanding of ecosystems and process dynamics in nature accentuates the need for observing these processes in higher temporal and spatial resolutions. Linked to this, the measurement of changes in the external structure and phytomorphology of plants is of particular interest. In the fields of environmental research and(More)