Peter Dedecker

Learn More
Diffraction-unlimited fluorescence imaging allows the visualization of intact, strongly heterogeneous systems at unprecedented levels of detail. Beyond the acquisition of detailed pictures, increasing efforts are now being focused on deriving quantitative insights from these techniques. In this work, we review the recent developments on sub-diffraction(More)
Fluid catalytic cracking (FCC) is a major process in oil refineries to produce gasoline and base chemicals from crude oil fractions. The spatial distribution and acidity of zeolite aggregates embedded within the 50-150 μm-sized FCC spheres heavily influence their catalytic performance. Single-molecule fluorescence-based imaging methods, namely nanometer(More)
Employing viruses as nanoscopic lipid-enveloped test tubes allows the miniaturization of protein-protein interaction (PPI) assays while preserving the physiological environment necessary for particular biological processes. Applied to the study of the human immunodeficiency virus type 1 (HIV-1), viral biology and pathology can also be investigated in novel(More)
Sub-diffraction imaging of plasma membrane localized proteins, such as the SNARE (Soluble NSF Attachment Protein Receptor) proteins involved in exocytosis, in fixed cells have resulted in images with high spatial resolution, at the expense of dynamical information. Here, we have imaged localized fluorescence bursts of DRONPA-fused SNAP-25 molecules in live(More)
In this paper we introduce the Virtual Private Ad Hoc Networking platform as an integrated solution for emergency communication and applications. This platform creates a virtual logical self-organizing network on top of existing network technologies reducing complexity and facilitating immediate availability. The architecture and its features will be(More)
Super-resolution optical fluctuation imaging (SOFI) allows one to perform sub-diffraction fluorescence microscopy of living cells. By analyzing the acquired image sequence with an advanced correlation method, i.e. a high-order cross-cumulant analysis, super-resolution in all three spatial dimensions can be achieved. Here we introduce a software tool for a(More)
In wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms estimate fluorophore density by using representations of the signal that(More)
Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we(More)
A marked-up version of the Supplementary Information was inadvertently published with the original version of this Article. In addition, Supplementary Software 1 was omitted. These errors have now been corrected. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are(More)