Learn More
The potential functional diversity of closely related myosin isoforms found in eukaryotic cells is not yet understood in detail. We have previously provided evidence from functional knockouts of Neuro-2A neuroblastoma cells that myosin IIB is essential for neurite outgrowth. Here we investigate the role of non-muscle myosin IIA in the same cell line. We(More)
Neuritic outgrowth is a striking example of directed motility, powered through the actions of molecular motors. Members of the myosin superfamily of actin-associated motors have been implicated in this complex process. Although conventional myosin II is known to be present in neurons, where it is localized at the leading edge of growth cones and in the cell(More)
We have generated a polyclonal antibody against myosin II from a neuronally derived cell line in order to assess potential roles for myosin II in growth cone movement and synaptic transmission. The distribution of neuronal myosin II, in isolated cells as well as in tissues of the adult rat brain and spinal cord, was examined at the light microscopic and(More)
Neuritic extension is the resultant of two vectorial processes: outgrowth and retraction. Whereas myosin IIB is required for neurite outgrowth, retraction is driven by a motor whose identity has remained unknown until now. Preformed neurites in mouse Neuro-2A neuroblastoma cells undergo immediate retraction when exposed to isoform-specific antisense(More)
Throughout life, neuromuscular junctions undergo dynamic changes, remodelling occurring through extension and withdrawal of motor nerve terminals in conjunction with changes in the distribution of acetylcholine receptors at the muscle endplate. However, relatively little is known about the fundamental processes by which nerve terminals are remodelled. These(More)
Muscle myosins are molecular motors that convert the chemical free energy available from ATP hydrolysis into mechanical displacement of actin filaments, bringing about muscle contraction. Myosin cross-bridges exert force on actin filaments during a cycle of attached and detached states that are coupled to each round of ATP hydrolysis. Contraction and ATPase(More)
The functions of nonmuscle myosin isoforms are key to an understanding of process outgrowth from nerve cells during animal development. Despite considerable structural similarity, myosin IIA and myosin IIB play distinct and complementary roles during the actin-based mechanisms of nerve process extension. An overview is given of evidence that implicates(More)
Neuronal dynamics result from the integration of forces developed by molecular motors, especially conventional myosins. Myosin IIC is a recently discovered nonsarcomeric conventional myosin motor, the function of which is poorly understood, particularly in relation to the separate but coupled activities of its close homologues, myosins IIA and IIB, which(More)
The results discussed in the preceding paper (Levine, R. J. C., J. L. Woodhead, and H. A. King. 1991. J. Cell Biol. 113:563-572.) indicate that A-band shortening in Limulus muscle is a thick filament response to activation that occurs largely by fragmentation of filament ends. To assess the effect of biochemical changes directly associated with activation(More)
The limbic system-associated membrane protein (LAMP) is a cell surface glycoprotein expressed by cortical and subcortical regions of the mammalian CNS that comprise or receive direct projections from limbic system structures. The early and restricted expression of LAMP has led to its postulated role in neural development. Purification and biochemical(More)