Peter D. Chantler

Learn More
Neuritic outgrowth is a striking example of directed motility, powered through the actions of molecular motors. Members of the myosin superfamily of actin-associated motors have been implicated in this complex process. Although conventional myosin II is known to be present in neurons, where it is localized at the leading edge of growth cones and in the cell(More)
The potential functional diversity of closely related myosin isoforms found in eukaryotic cells is not yet understood in detail. We have previously provided evidence from functional knockouts of Neuro-2A neuroblastoma cells that myosin IIB is essential for neurite outgrowth. Here we investigate the role of non-muscle myosin IIA in the same cell line. We(More)
Neuritic extension is the resultant of two vectorial processes: outgrowth and retraction. Whereas myosin IIB is required for neurite outgrowth, retraction is driven by a motor whose identity has remained unknown until now. Preformed neurites in mouse Neuro-2A neuroblastoma cells undergo immediate retraction when exposed to isoform-specific antisense(More)
We have generated a polyclonal antibody against myosin II from a neuronally derived cell line in order to assess potential roles for myosin II in growth cone movement and synaptic transmission. The distribution of neuronal myosin II, in isolated cells as well as in tissues of the adult rat brain and spinal cord, was examined at the light microscopic and(More)
The limbic system-associated membrane protein (LAMP) is a cell surface glycoprotein expressed by cortical and subcortical regions of the mammalian CNS that comprise or receive direct projections from limbic system structures. The early and restricted expression of LAMP has led to its postulated role in neural development. Purification and biochemical(More)
The myosin 2 family of molecular motors includes isoforms regulated in different ways. Vertebrate smooth-muscle myosin is activated by phosphorylation of the regulatory light chain, whereas scallop striated adductor-muscle myosin is activated by direct calcium binding to its essential light chain. The paired heads of inhibited molecules from myosins(More)
Scallop striated adductor muscle myosin is a regulatory myosin, its activity being controlled directly through calcium binding. Here, we show that millimolar concentrations of trifluoperazine were effective at removal of all regulatory light chains from scallop myosin or myofibrils. More important, 200 microM trifluoperazine, a concentration 10-fold less(More)
Neuronal dynamics result from the integration of forces developed by molecular motors, especially conventional myosins. Myosin IIC is a recently discovered nonsarcomeric conventional myosin motor, the function of which is poorly understood, particularly in relation to the separate but coupled activities of its close homologues, myosins IIA and IIB, which(More)
The functions of nonmuscle myosin isoforms are key to an understanding of process outgrowth from nerve cells during animal development. Despite considerable structural similarity, myosin IIA and myosin IIB play distinct and complementary roles during the actin-based mechanisms of nerve process extension. An overview is given of evidence that implicates(More)