Learn More
Correctly predicting the disulfide bond topology in a protein is of crucial importance for the understanding of protein function and can be of great help for tertiary prediction methods. The web server http://clavius.bc.edu/~clotelab/DiANNA/ outputs the disulfide connectivity prediction given input of a protein sequence. The following procedure is(More)
MOTIVATION We describe a stand-alone algorithm to predict disulfide bond partners in a protein given only the amino acid sequence, using a novel neural network architecture (the diresidue neural network), and given input of symmetric flanking regions of N-terminus and C-terminus half-cystines augmented with residue secondary structure (helix, coil, sheet)(More)
Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are(More)
DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved in a disulfide bond, and employs a novel architecture(More)
We present results of computer experiments that indicate that several RNAs for which the native state (minimum free energy secondary structure) is functionally important (type III hammerhead ribozymes, signal recognition particle RNAs, U2 small nucleolar spliceosomal RNAs, certain riboswitches, etc.) all have lower folding energy than random RNAs of the(More)
Though the electrostatic, ionic, van der Waals, Lennard-Jones, hydrogen bonding, and other forces play an important role in the energy function minimized at a protein's native state, it is widely believed that the hydrophobic force is the dominant term in protein folding. Here we attempt to quantify the extent to which the hydrophobic force determines the(More)
Synthetic biology is a rapidly emerging discipline with long-term ramifications that range from single-molecule detection within cells to the creation of synthetic genomes and novel life forms. Truly phenomenal results have been obtained by pioneering groups--for instance, the combinatorial synthesis of genetic networks, genome synthesis using BioBricks,(More)