Peter Christiaan Soema

Learn More
Developing new ways of delivering cells to diseased tissue will be a key factor in translating cell therapeutics research into clinical use. Magnetically targeting cells enables delivery of significant numbers of cells to key areas of specific organs. To demonstrate feasibility in neurological tissue, we targeted cells magnetically to the upper hemisphere(More)
Vaccination is the most effective method to prevent influenza infection. However, current influenza vaccines have several limitations. Relatively long production times, limited vaccine capacity, moderate efficacy in certain populations and lack of cross-reactivity are important issues that need to be addressed. We give an overview of the current status and(More)
Subunit vaccines are generally safer, but often less effective than live attenuated vaccines as they lack the necessary co-stimulatory factors. The formulation of an adjuvant like N-trimethyl chitosan (TMC) with an antigen can overcome its poor immunogenicity. Recent data suggest the importance of incorporating the antigen and the adjuvant into one entity(More)
Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as(More)
The potential of bioneedles to deliver influenza vaccines was investigated. Four influenza vaccine formulations were screened to determine the optimal formulation for use with bioneedles. The stability of the formulations after freeze-drying was checked to predict the stability of the influenza vaccines in the bioneedles. Subunit, split, virosomal and whole(More)
Seasonal influenza vaccines provide protection against matching influenza A virus (IAV) strains mainly through the induction of neutralizing serum IgG antibodies. However, these antibodies fail to confer a protective effect against mismatched IAV. This lack of efficacy against heterologous influenza strains has spurred the vaccine development community to(More)
Influenza CD8+ T-cell epitopes are conserved amongst influenza strains and can be recognized by influenza-specific cytotoxic T-cells (CTLs), which can rapidly clear infected cells. An influenza peptide vaccine that elicits these CTLs would therefore be an alternative to current influenza vaccines, which are not cross-reactive. However, peptide antigens are(More)
Combining various imaging modalities often leads to complementary information and synergistic advantages. A trimodal long-circulating imaging agent tagged with radioactive, magnetic resonance, and fluorescence markers is able to combine the high sensitivity of SPECT with the high resolution of MRI over hours and days. The fluorescence marker helps to(More)
Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV)(More)
In this study, the effect of liposomal lipid composition on the physicochemical characteristics and adjuvanticity of liposomes was investigated. Using a design of experiments (DoE) approach, peptide-containing liposomes containing various lipids (EPC, DOPE, DOTAP and DC-Chol) and peptide concentrations were formulated. Liposome size and zeta potential were(More)