Peter Christalla

Learn More
Uniparental parthenotes are considered an unwanted byproduct of in vitro fertilization. In utero parthenote development is severely compromised by defective organogenesis and in particular by defective cardiogenesis. Although developmentally compromised, apparently pluripotent stem cells can be derived from parthenogenetic blastocysts. Here we hypothesized(More)
RATIONALE Central questions such as cardiomyocyte subtype emergence during cardiogenesis or the availability of cardiomyocyte subtypes for cell replacement therapy require selective identification and purification of atrial and ventricular cardiomyocytes. However, current methodologies do not allow for a transgene-free selective isolation of atrial or(More)
RATIONALE Cardiac tissue engineering should provide "realistic" in vitro heart muscle models and surrogate tissue for myocardial repair. For either application, engineered myocardium should display features of native myocardium, including terminal differentiation, organotypic maturation, and hypertrophic growth. OBJECTIVE To test the hypothesis that(More)
Total mechanical unloading of the heart in classical models of heterotopic heart transplantation leads to cardiac atrophy and functional deterioration. In contrast, partial unloading of failing human hearts with left ventricular (LV) assist devices (LVADs) can in some patients ameliorate heart failure symptoms. Here we tested in heterotopic rat heart(More)
Cardiac muscle engineering is evolving rapidly, aiming at the provision of innovative models for drug development and therapeutic myocardium. The progress in this field will depend crucially on the proper exploitation of stem cell technologies. Understanding the processes governing stem cell differentiation towards a desired phenotype and subsequent(More)
Due to their potential to differentiate into virtually any cell-type, pluri — potent stem cells (PSCs) are a highly valuable tool for both academia and industry. Most in vitro differentiation protocols mimic embryonic development by activation or inhibition of crucial signalling pathways. Growth factors play a central role in the manipulation of these(More)
Parthenogenetic stem cells (PSCs) are a promising candidate donor for cell therapy applications. Similar to embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), PSCs exhibit self-renewing capacity and clonogenic proliferation in vitro. PSCs exhibit largely haploidentical genotype, and as such may constitute an attractive population for(More)
  • 1