Peter C. Brugger

Learn More
Anatomical and functional hemispheric lateralization originates from differential gene expression and leads to asymmetric structural brain development, which initially appears in the perisylvian regions by 26 gestational weeks (GWs). In this in vivo neuroimaging study, we demonstrated a predominant pattern of temporal lobe (TL) asymmetry in a large cohort(More)
Diffusion tensor imaging (DTI) and tractography are noninvasive tools that enable the study of three-dimensional diffusion characteristics and their molecular, cellular, and microstructural correlates in the human brain. To date, these techniques have mainly been limited to postnatal MR studies of premature infants and newborns. The primary aim of this(More)
Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental(More)
BACKGROUND AND PURPOSE Infants with very low birth weight are at high risk for cerebral lesions. Although supratentorial brain damage is a common radiologic finding, posterior fossa pathologies are rare. We studied the morphology of cerebellar involvement in a large series of 28 premature infants born before the 30th week of gestation to define typical(More)
Prenatal neuroimaging requires reference models that reflect the normal spectrum of fetal brain development, and summarize observations from a representative sample of individuals. Collecting a sufficiently large data set of manually annotated data to construct a comprehensive in vivo atlas of rapidly developing structures is challenging but necessary for(More)
The present work reviews the basic methods of performing fetal magnetic resonance imaging (MRI). Since fetal MRI differs in many respects from a postnatal study, several factors have to be taken into account to achieve satisfying image quality. Image quality depends on adequate positioning of the pregnant woman in the magnet, use of appropriate coils and(More)
The unfavorable impact of prematurity on the developing cerebellum was recently recognized, but the outcome after impaired cerebellar development as a prematurity-related complication is hitherto not adequately documented. Therefore we compared 31 preterm patients with disrupted cerebellar development to a control group of 31 gender and gestational age(More)
Complete or partial agenesis of the corpus callosum are rather common developmental abnormalities, resulting in a wide spectrum of clinical neurodevelopmental deficits. Currently, a significant number of these cases are detected by prenatal sonography during second trimester screening examinations. However, major uncertainties about a detailed morphological(More)
Association fibers connect different cortical areas within the same hemisphere and constitute an essential anatomical substrate for a diverse range of higher cognitive functions. So far a comprehensive description of the prenatal in vivo morphology of these functionally important pathways is lacking. In the present study, diffusion tensor imaging (DTI) and(More)
The recent technological advancement of fast magnetic resonance imaging (MRI) sequences allowed the inclusion of diffusion tensor imaging, functional MRI, and proton MR spectroscopy in prenatal imaging protocols. These methods provide information beyond morphology and hold the key to improving several fields of human neuroscience and clinical diagnostics.(More)