Peter Bremen

Learn More
Interaural time differences are an important cue for azimuthal sound localization. It is still unclear whether the same neuronal mechanisms underlie the representation in the brain of interaural time difference in different vertebrates and whether these mechanisms are driven by common constraints, such as optimal coding. Current sound localization models(More)
Coincidence detection by binaural neurons in the medial superior olive underlies sensitivity to interaural time difference (ITD) and interaural correlation (ρ). It is unclear whether this process is akin to a counting of individual coinciding spikes, or rather to a correlation of membrane potential waveforms resulting from converging inputs from each side.(More)
Orienting responses to audiovisual events in the environment can benefit markedly by the integration of visual and auditory spatial information. However, logically, audiovisual integration would only be considered successful for stimuli that are spatially and temporally aligned, as these would be emitted by a single object in space-time. As humans do not(More)
To program a goal-directed orienting response toward a sound source embedded in an acoustic scene, the audiomotor system should detect and select the target against a background. Here, we focus on whether the system can segregate synchronous sounds in the midsagittal plane (elevation), a task requiring the auditory system to dissociate the pinna-induced(More)
In a complex auditory scene, a "cocktail party" for example, listeners can disentangle multiple competing sequences of sounds. A recent psychophysical study in our laboratory demonstrated a robust spatial component of stream segregation showing ∼8° acuity. Here, we recorded single- and multiple-neuron responses from the primary auditory cortex of(More)
UNLABELLED Stream segregation enables a listener to disentangle multiple competing sequences of sounds. A recent study from our laboratory demonstrated that cortical neurons in anesthetized cats exhibit spatial stream segregation (SSS) by synchronizing preferentially to one of two sequences of noise bursts that alternate between two source locations. Here,(More)
The auditory system creates a neuronal representation of the acoustic world based on spectral and temporal cues present at the listener's ears, including cues that potentially signal the locations of sounds. Discrimination of concurrent sounds from multiple sources is especially challenging. The current study is part of an effort to better understand the(More)
So far, the double-magnetic induction (DMI) method has been successfully applied to record eye movements from head-restrained humans, monkeys and cats. An advantage of the DMI method, compared to the more widely used scleral search coil technique, is the absence of vulnerable lead wires on the eye. A disadvantage, however, is that the relationship between(More)
We studied the influence of frequency on sound localization in free-flying barn owls by quantifying aspects of their target-approaching behavior to a distant sound source during ongoing auditory stimulation. In the baseline condition with a stimulus covering most of the owls hearing range (1–10 kHz), all owls landed within a radius of 20 cm from the(More)
Bremen P, Van der Willigen RF, Van Opstal AJ. Applying double magnetic induction to measure two-dimensional head-unrestrained gaze shifts in human subjects. J Neurophysiol 98: 3759–3769, 2007. First published September 26, 2007; doi:10.1152/jn.00886.2007. This study compares the performance of a newly developed gaze (eye-inspace) measurement technique based(More)