Peter B. Simpson

Learn More
The intracellular concentration of free Ca2+ ([Ca2+]i) displays complex fluctuations in response to a variety of stimuli, and acts as a pluripotent signal for many neuronal functions. It is well established that various 'metabotropic' neurotransmitter receptors can mediate the mobilization of Ca2+ stores via actions of inositol-polyphosphate second(More)
Selective modulators of gamma-aminobutyric acid, type A (GABA(A)) receptors containing alpha(4) subunits may provide new treatments for epilepsy and premenstrual syndrome. Using mouse L(-tk) cells, we stably expressed the native GABA(A) receptor subunit combinations alpha(3)beta(3)gamma(2,) alpha(4)beta(3)gamma(2), and, for the first time,(More)
In oligodendrocyte processes, methacholine-evoked Ca2+ waves propagate via regions of specialized Ca2+ release kinetics (wave amplification sites) at which the amplitude and rate of rise of local Ca2+ signals are markedly higher than in surrounding areas (Simpson, P. B., and Russell, J. T. (1996) J. Biol. Chem. 271, 33493-33501). In the present study we(More)
We have examined the mechanisms that underlie Ca2+ wave propagation in cultured cortical astrocytes. Norepinephrine evoked Ca2+ waves in astrocytes that began at discrete initiation loci and propagated throughout the cell by regenerative amplification at a number of cellular sites, as shown by very high Ca2+ release rates at these regions. We have(More)
We have examined the potential roles of intracellular Ca2+ regulation and of multiple cytoskeletal elements in control of the directed migration of cultured oligodendrocyte progenitor cells (OPs). OPs were found to migrate in response to platelet-derived growth factor (PDGF) or to a lesser extent to basic fibroblast growth factor (FGF) in a non-additive(More)
To understand how extracellular signals may produce long-term effects in neural cells, we have analyzed the mechanism by which neurotransmitters and growth factors induce phosphorylation of the transcription factor cAMP response element binding protein (CREB) in cortical oligodendrocyte progenitor (OP) cells. Activation of glutamate receptor channels by(More)
We have examined the spatial and temporal nature of Ca2+ signals activated via the phosphoinositide pathway in oligodendrocytes and the cellular specializations underlying oligodendrocyte Ca2+ response characteristics. Cultured cortical oligodendrocytes were incubated with fluo 3 or fura 2, and digital video fluorescence microscopy was used to study the(More)
We have characterized the sarcoplasmic-endoplasmic reticulum Ca2+-ATPase (SERCA) pumps in cultured rat cortical type-1 astrocytes, type-2 astrocytes and oligodendrocytes. Perfusion with 10 microM cyclopiazonic acid (CPA) or 1 microM thapsigargin evoked a large and persistent elevation in cytosolic [Ca2+] in normal Ca2+-containing medium and a small and(More)
This study was undertaken to examine the expression and role of the endoplasmic reticulum (ER) proteins calreticulin and ryanodine receptors, and mitochondria, in cultured astrocytes. Using several lines of investigation, we have identified a key role for mitochondria in astrocyte Ca2+ signalling: (1) a significant correlation was found between sites of(More)
The [Ca2+]i of cerebellar granule cells can be increased in a biphasic manner by addition of NMDA or by depolarization (induced by elevating the extracellular K+ level), which both activate Ca2+ influx. The possibility that these stimuli activate Ca2(+)-induced Ca2+ release was investigated using granule cells loaded with fura 2-AM. Dantrolene, perfused(More)