Peter Aelterman

Learn More
Microbial fuel cell (MFC) research is a rapidly evolving field that lacks established terminology and methods for the analysis of system performance. This makes it difficult for researchers to compare devices on an equivalent basis. The construction and analysis of MFCs requires knowledge of different scientific and engineering fields, ranging from(More)
Connecting several microbial fuel cell (MFC) units in series or parallel can increase voltage and current; the effect on the microbial electricity generation was as yet unknown. Six individual continuous MFC units in a stacked configuration produced a maximum hourly averaged power output of 258 W m(-3) using a hexacyanoferrate cathode. The connection of the(More)
Microbial fuel cells (MFCs) that remove carbon as well as nitrogen compounds out of wastewater are of special interest for practice. We developed a MFC in which microorganisms in the cathode performed a complete denitrification by using electrons supplied by microorganisms oxidizing acetate in the anode. The MFC with a cation exchange membrane was designed(More)
The anode potential in microbial fuel cells controls both the theoretical energy gain for the microorganisms as the output of electrical energy. We operated three reactors fed with acetate continuously at a poised anode potential of 0 (R 0), −200 (R −200) and −400 (R −400) mV versus Ag/AgCl and investigated the resulting bacterial activity. The anode(More)
A tubular, single-chambered, continuous microbial fuel cell (MFC) that generates high power outputs using a granular graphite matrix as the anode and a ferricyanide solution as the cathode is described. The maximal power outputs obtained were 90 and 66 W m(-3) net anodic compartment (NAC) (48 and 38 W m(-3) total anodic compartment (TAC)) for feed streams(More)
Bio-electrochemical systems (BESs) enable microbial catalysis of electrochemical reactions. Plain electrical power production combined with wastewater treatment by microbial fuel cells (MFCs) has been the primary application purpose for BESs. However, large-scale power production and a high chemical oxygen demand conversion rates must be achieved at a(More)
Microbial fuel cells (MFCs) are emerging as promising technology for the treatment of wastewaters. The potential energy conversion efficiencies are examined. The rates of energy recovery (W/m3 reactor) are reviewed and evaluated. Some recent data relating to potato-processing wastewaters and a hospital wastewater effluent are reported. Finally, a set of(More)
Microbial reduction of soluble Pd(II) by cells of Shewanella oneidensis MR-1 and of an autoaggregating mutant (COAG) resulted in precipitation of palladium Pd(0) nanoparticles on the cell wall and inside the periplasmic space (bioPd). As a result of biosorption and subsequent bioreduction of Pd(II) with H2, formate, lactate, pyruvate or ethanol as electron(More)
Previous studies revealed the abundance of Pseudomonas sp. in the microbial community of a microbial fuel cell (MFC). These bacteria can transfer electrons to the electrode via self-produced phenazine-based mediators. A MFC fed with acetate where several Pseudomonas sp. were present was found to be rich in a Gram-positive bacterium, identified as(More)
Thus far, microbial fuel cells (MFCs) have been used to convert carbon-based substrates to electricity. However, sulfur compounds are ubiquitously present in organic waste and wastewater. In this study, a MFC with a hexacyanoferrate cathodic electrolyte was used to convert dissolved sulfide to elemental sulfur. Two types of MFCs were used, a square type(More)