Peter A. Sharma

Learn More
Ferroelectric and magnetic materials are a time-honoured subject of study and have led to some of the most important technological advances to date. Magnetism and ferroelectricity are involved with local spins and off-centre structural distortions, respectively. These two seemingly unrelated phenomena can coexist in certain unusual materials, termed(More)
We have investigated the detailed magnetic field dependence of the electric polarization and dielectric constant in (Tb,Dy,Ho)Mn2O5 where magnetic and ferroelectric transitions are intimately coupled. Our fundamental discovery is the unprecedented large change of the dielectric constant with magnetic field, particularly in DyMn2O5, associated with an(More)
The interest in plasmonic technologies surrounds many emergent optoelectronic applications, such as plasmon lasers, transistors, sensors and information storage. Although plasmonic materials for ultraviolet-visible and near-infrared wavelengths have been found, the mid-infrared range remains a challenge to address: few known systems can achieve(More)
Our results from various transport experiments on Mg1-xB2 indicate a surprising effect associated with the presence of a Mg deficiency in MgB2: the phase separation between Mg-vacancy rich and Mg-vacancy poor phases. The Mg-vacancy poor phase is superconducting, but the insulating nature of the Mg-vacancy rich phase probably originates from the Anderson(More)
Bismuth telluride nanoparticles (NPs) have been synthesized using a low-temperature wet-chemical approach from bismuth(III) oleate and tri-n-octylphosphine telluride. The size and shape of the NPs can be controlled by adjusting the temperature, reaction time, and nature of the surfactants and solvents. Aromatic hydrocarbons (toluene, xylenes) and ethers(More)
Although abundant research has focused recently on the quantum criticality of itinerant magnets, critical phenomena of insulating magnets in the vicinity of critical endpoints (CEP's) have rarely been revealed. Here we observe an emergent CEP at 2.05 T and 2.2 K with a suppressed thermal conductivity and concomitant strong critical fluctuations evident via(More)
Competition between electronic ground states near a quantum critical point (QCP)--the location of a zero-temperature phase transition driven solely by quantum-mechanical fluctuations--is expected to lead to unconventional behaviour in low-dimensional systems. New electronic phases of matter have been predicted to occur in the vicinity of a QCP by(More)
The thermal conductivity of the magnetically frustrated, ferroelectric YMnO3 exhibits an isotropic suppression in the cooperative paramagnetic state, followed by a sudden increase upon magnetic ordering. This unprecedented behavior without an associated static structural distortion probably originates from the strong dynamic coupling between acoustic(More)
We use a spatially resolved, direct spectroscopic probe for electronic structure with an additional sensitivity to chemical compositions to investigate high-quality single crystal samples of La(1/4)Pr(3/8)Ca(3/8)MnO3, establishing the formation of distinct insulating domains embedded in the metallic host at low temperatures. These domains are found to be at(More)