Learn More
Sorting of transmembrane cargo into clathrin-coated vesicles requires endocytic adaptors, yet RNA interference (RNAi)-mediated gene silencing of the AP-2 adaptor complex only disrupts internalization of a subset of clathrin-dependent cargo. This suggests alternate clathrin-associated sorting proteins participate in cargo capture at the cell surface, and a(More)
Most eukaryotes utilize a single pool of clathrin to assemble clathrin-coated transport vesicles at different intracellular locations. Coat assembly is a cyclical process. Soluble clathrin triskelia are recruited to the membrane surface by compartment-specific adaptor and/or accessory proteins. Adjacent triskelia then pack together to assemble a polyhedral(More)
Natural killer (NK) cell tolerance mechanisms are incompletely understood. One possibility is that they possess self-specific activation receptors that result in hyporesponsiveness unless modulated by self-major histocompatability complex (MHC)-specific inhibitory receptors. As putative self-specific activation receptors have not been well characterized, we(More)
The independently folded appendages of the large alpha and beta2 subunits of the endocytic adaptor protein (AP)-2 complex coordinate proper assembly and operation of endocytic components during clathrin-mediated endocytosis. The beta2 subunit appendage contains a common binding site for beta-arrestin or the autosomal recessive hypercholesterolemia (ARH)(More)
Aberrant activation of macrophages in arterial walls by oxidized lipoproteins can lead to atherosclerosis. Oxidized lipoproteins convert macrophages to foam cells through lipid uptake and TLR signaling. To investigate the relative contributions of lipid uptake and TLR signaling in foam cell formation, we established an in vitro assay using liposomes of(More)
Clathrin-mediated endocytosis depends upon the coordinated assembly of a large number of discrete clathrin coat components to couple cargo selection with rapid internalization from the cell surface. Accordingly, the heterotetrameric AP-2 adaptor complex binds not only to clathrin and select cargo molecules, but also to an extensive family of endocytic(More)
Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or(More)
Pore-forming toxins are utilized by bacterial and mammalian cells to exert pathogenic effects and induce cell lysis. In addition to rapid plasma membrane repair, macrophages respond to pore-forming toxins through activation of the NLRP3 inflammasome, leading to IL-1β secretion and pyroptosis. The structural determinants of pore-forming toxins required for(More)
Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential(More)